
Space and Time:
The Verifiable Compute Layer for Web3

Scott Dykstra Jay White, PhD Nate Holiday Catherine Daly

David Alves Ian Joiner, PhD

January 2024
v1.0

Abstract

As Web3 rapidly matures, its path to mass adoption is hindered by three key deficiencies: poor
user and developer experiences, the fragmentation of blockchain ecosystems (and associated zero
knowledge toolkits), and the inherent limitations of smart contracts in their ability to process
data. In order to realize the vision of Web3—a world where business logic and value exchange
are underpinned not by trust, but by verifiability—each of these obstacles must be overcome.
Space and Time has pioneered a breakthrough zero-knowledge circuit that speeds up
time-to-value for dapp developers, improves end-user experience, acts as a single source of truth
for the state of every popular blockchain, and serves as a coprocessor to supplement the limited
storage and computational power of smart contracts using verifiable SQL queries. This protocol,
“Proof of SQL,” can be embedded in any SQL-compatible database solution, though Space and
Time has delivered it to the market in the form of a decentralized data warehouse loaded with
already-verified blockchain data indexed from popular chains. Our goal is to enable dapp
developers with sophisticated, data-driven, cross-chain smart contracts—fulfilling the vision of
Web3.

1

Table of Contents
1 The Problem: Untapped Potential of Web3 5

1.1 Smart Contracts Can’t Access Critical Data 5

1.2 The Missing Query Coprocessor 7

1.3 Centralized = Unsecure 7

1.4 Current ZK Solutions and Their Limitations 8

1.5 The Call for a Community Operated Data Warehouse 9

2 The Solution: Decentralized Data Warehouse with
Proof of SQL 10

2.1 Introduction 10

2.1.1 Decentralized Data Warehouse 10

2.1.2 Proof of SQL 11

2.1.3 Coprocessing Unlocked for Smart Contracts: Examples 12

2.2 Design Goals 13

2.3 Solution Components 15

2.3.1 Provers (Proof of SQL Nodes) 15

2.3.2 Validators (Indexing Nodes) 15

2.3.3 Transaction Serving (Consensus Nodes) 16

2.3.4 Onchain and Offchain Components 17

2.4 Ingestion Layer with Verifiable Indexing 19

2.5 Community-Operated Data Warehouse Design 19

2.6 Infinite Tables join Web2 with Web3 21

2.7 Verification in Smart Contracts vs. Oracle Networks 22

3 Design of the Proof of SQL Protocol 23

3.1 Overall Architecture 24

3.1.1 Data Ingestion 24

3.1.2 Query Request 25

3.1.3 Proof Protocol Overview 26

3.2 Parsing 27

3.3 Query Executor and Interactive Protocol Builder 28

3.3.1 Query Execution / Witness Generation 28

3.3.2 Commitment Computation / Multiple Rounds 30

3.3.3 Constraint Building 30

3.4 Notation 31

3.5 Example Subprotocols 32

2

3.5.1 Equality Protocol Builder 32

3.5.2 Group By Protocol Builder 33

3.6 Relation Proof Protocol (Sum-check) 35

3.7 Commitment Evaluator 36

4 Use Cases for the Next-Generation of Web3 38

4.1 Building a Flexible ZK-Rollup/L2 38

4.2 Secure Bridges and Multichain Data Backends 39

4.3 Dapp Backend (Decentralized) 41

4.4 Data-Driven Lending 41

4.5 Cross-Chain Financial Instruments 42

4.6 Gaming Rewards 42

4.7 Web3 Social Apps 43

4.8 Settlement Systems and Third-Party Auditing 45

4.9 Custodial Digital Assets 46

4.10 Tokenization of Real-World Assets and Dynamic NFTs 47

4.11 Transaction Security and Wallet Whitelists 48

4.12 Liquidity Pool Rebalancing based on Market Conditions 48

5 Decentralized Network Value Accrual 49

5.1 Node Operations 49

5.2 Token Utility 53

5.3 Governance 54

5.4 Additional Business Models 55

5.5 Network Effects 57

6 Conclusion 58

Appendix 60

A Data that Smart Contracts Can Access (without Space and Time) 60

B HTAP to Replace Point-Solutions 62

C Proof of SQL “Bring Your Own Database” 63

D Leveraging an Append-Only Database as a Tamperproof Offchain
Ledger 64

E Space and Time in the Market 66

E.1 Web3’s evolution as a digital economy powering novel apps 66

E.2 Proven value in data warehousing 67

E.3 New compute paradigm removes trust-requirements 68

References 70

3

1 The Problem: Untapped Potential of Web3

1.1 Smart Contracts Can’t Access Critical Data

Smart contracts power the most valuable financial tools in Web3, including Uniswap, Aave,
Compound, and Synthetix, which each represent billions of dollars in value secured by the
Ethereum Virtual Machine (EVM). These decentralized finance (DeFi) protocols have reshaped
markets, offering trustless, permissionless asset management. However, they lack dynamic
data-driven sophistication. For instance, a new Aave borrower gets the same rate as a seasoned
entity with onchain assets and history.

In traditional markets, derivatives like European or American-style options hold more capital
than their underlying assets. They represent a huge portion of liquidity, with over 40 million
options contracts traded daily[1]. However, these options are absent onchain due to the restrictions
of smart contracts—they are difficult to deploy in a trustless manner due to their dependencies on
data processing, although can be deployed offchain via centralized infra. Conversely, onchain
perpetual futures have an impressive annual volume of $39 trillion. Their popularity in Web3 yet
complete absence in traditional markets—even after years of Web3 adoption—is not because
‘perps’ are superior financial instruments, but rather because they execute simple logic in a smart
contract without relying on any external data (besides token price feeds).

Such limitations in DeFi stem from the fundamental inability of smart contracts to query data,
even from the logs of the blockchain they’re deployed on. EVM contracts can only access wallet
balances, information about the current transaction, some blockchain metadata, and their own
limited internal memory.A It’s important to understand that the data published by blockchains and
the data accessible to smart contracts within the blockchain virtual machine are two completely
different things. ‘Full/archive’ nodes of blockchains store a wealth of data across the full history
of the chain, but none of this data is accessible directly to smart contracts. Using such nodes, an
external offchain client can easily access datapoints such as:

● The state of the entire blockchain at any given time in history (e.g. who is the first owner
of the “Cryptopunk #1” NFT).

● The transactions—and events emitted as a result of transactions—at any given time in
history (e.g. Nathan’s wallet swapped 1000 USDC to 0.5ETH on 4/18/2023).

Yet, smart contracts cannot access this wealth of data generated by offchain indexing solutions
(which use ‘full/archive’ blockchain nodes as a data source) as doing so introduces additional
trust assumptions on those tamperable/unproven indexing solutions which are often centralized..

4

External tools such as decentralized oracle networks (DONs), especially Chainlink, bridged this
gap initially, providing smart contracts with trust-minimized access to simple aggregated data
points such as token prices. Yet, oracle networks can't process complex or sizable datasets (such
as a query that aggregates transaction volumes in a liquidity pool since its inception), limiting
their capability in DeFi's evolution. While oracle price feeds ushered in an initial wave of
onchain financial instruments, sophisticated data-driven smart contracts will mark the next wave.

The growing popularity of multichain protocols compounds the need for more sophisticated
contracts. Top decentralized applications (dapps), like the four aforementioned DeFi protocols,
each operate on at least three different chains. With the proliferation of Layer 2 scaling solutions
around the EVM ecosystem, a smart contract not only needs access to activity on its own chain
but also other chains. Many dapps deployed cross-chain use a "hub" smart contract on a
well-known chain like Ethereum, and "spoke" contracts on faster, cheaper chains, though these
may be less decentralized and secure. The main challenge is: how can the hub monitor activities
across all its spokes?

Similarly, in Web3 gaming, smart contracts offering in-game rewards can't easily integrate data
about in-game actions or onchain non-fungible token (NFT) activities. This makes it difficult to
reward players based on straightforward conditions, like winning a game, achieving over two
hours of playtime, or leveling-up a weapon.

While some are creating sophisticated onchain protocols with the help of centralized systems
offchain, this compromises the proof-driven model of Web3. Currently, there aren't trustless
solutions that address the data processing limitations of smart contracts.

1.2 The Missing Query Coprocessor

In traditional SaaS, apps are powered by business logic that, at its most basic level, is simply a
three-step process of retrieving a query result, executing an action based on that result, and
updating the state of the system. For example, lenders query a potential borrower’s
creditworthiness, run an algorithm to determine loan approval and rate, and then update account
state. E-commerce platforms query for product availability, execute logic to reserve or purchase
items, and then adjust inventory levels or order activity. Travel booking platforms query
available flights/hotels/rentals, execute frontend logic promoting bookings options most relevant
to the consumer, and then update availability and record user booking details. Social platforms
query posts/content associated with users’ connections, execute an algorithm to rank the content
in the user’s feed, and then update the backend state by recording content
viewership/engagement, which then adjusts the algorithm for future content displays.

The glaring chasm in Web3 can be easily understood when this same framework is applied. The
blockchain serves as a state management layer and smart contracts execute actions as arbitrary

5

code (business logic), but the query layer is still void—a gap that hinders the full realization of
what dapps can achieve. Throughout this document, we will demonstrate how Space and Time
fills this gap by serving as a “query coprocessor” which functionally sits next to major chains
and supplements the limited compute (data processing) capacity of contracts on such chains.

1.3 Centralized = Unsecure

Though oracle networks enable smart contracts with trust-minimized access to simple data
points, they do not have the ability to execute queries to process large volumes of data. The
natural question that then follows is, why not simply connect a SQL database to a smart contract
through an oracle solution? Databases that are fast enough to power real-time transactions,
scalable enough to handle the entire state of the blockchain, and mature enough to manage
complex queries are currently all centralized (tamperable black boxes), which makes them
fundamentally incompatible with Web3.

First, centralization is antithetical to the ethos of Web3. Introducing a centralized component
(tamperable “black-box” operated by a single entity) into the query layer infringes on the vision
of a world without intermediaries, where data flows freely across a peer-to-peer network and
can’t be manipulated or censored. Connecting centralized databases to smart contracts—though
many dapp developers are doing exactly this today—is a wholly regressive step for the
ecosystem.

Perhaps more importantly, smart contracts secure value onchain, and therefore must be trustless
end-to-end. A centralized database is a single point of failure that is vulnerable to tampering and
manipulation, which directly imperils the assets locked in a smart contract and undermines its
core promise of cryptographically guaranteed value exchange. The query layer of Web3 cannot
be powered by offchain, centralized, trusted systems operated by entities with the ability to
manipulate the data connected to smart contracts.

1.4 Current ZK Solutions and Their Limitations

Zero-knowledge (ZK) proofs have been heralded as the panacea for trustless data access,
offering a way to prove the veracity of data without revealing the data itself. ZK technology
offers offchain data computation with the same cryptographic integrity of the blockchain (as the
proofs themselves are generally verified by a smart contract on a major chain), providing a way
to supplement the limited data access and limited compute available to smart contracts.
ZK-proofs replace the burdensome infrastructure overhead of offchain consensus, allowing a
single node (a single machine, or a cluster of servers working together as a node) to serve as a
coprocessor for an L1/L2 smart contract. However, current ZK solutions are immature, including
the following limitations:

6

1. Not Scalable: The computational overhead of a ZK-proof makes it challenging to
process data at the scale of an entire blockchain. They are not equipped with input data
ingested (indexed) from major chains, and often generate proofs at dial-up speeds, with
proof times ranging from 3 to 30 minutes. Without the capability to efficiently handle
large-scale data, ZK solutions cannot fully meet the demands of sophisticated dapps in a
growing and dynamic Web3 ecosystem. Quickly proving arbitrary computations over tiny
datasets is one thing, but proving a complex SQL query against the multi-year transaction
history of a set of liquidity pools or wallets on Ethereum is quite another.

2. Fragmented: The landscape of ZK solutions is also highly fragmented, with some
solutions tailored for privacy enhancements, others optimized for scalability
improvements, and still others designed to address specific use cases around transaction
batching and rollup to L1 chains. Stringing these point-solutions together is time
consuming, expensive, and error-prone.

3. Unfamiliar User Experience: Though developer tooling in the ZK space is expanding
rapidly, developers face a challenge learning new languages (such as Cairo), new
compute paradigms (such as writing code to run efficiently inside a “ZKVM”), and new
infrastructure deployments (such as standing up hardware for running a “zkEVM
rollup”). SQL on the other hand, has been prevalent for decades and offers a familiar UX.

4. Not Built for Queries: Most obviously, current ZK solutions do not satisfy the missing
component of the Web3 stack: the query layer. Today, there is no ZK-proof that enables
trustless queries/data processing for large datasets (besides Space and Time), and so the
gap remains.

1.5 The Call for a Community Operated Data Warehouse

Over the past 15 years, the centralization of online user data has become a predominant theme.
Large tech conglomerates have compartmentalized vast troves of user data (online activity,
transactions, content, etc.) into centralized black-box repositories, often cloud data warehouses.
These entities exercise full dominion over the accumulated information, productizing user
interactions, behaviors, and personal preferences for profit. This commercialization occurred
without clear consent or even the knowledge of the very users who generate this data—the
internet’s constituents. Such a system stands in stark contrast to the ethos of Web3, which
envisions a decentralized internet where users reclaim control over their data, retain their right to
privacy behind the pseudonym of a wallet address, and enjoy an inherent transparency in their
digital interactions.

Consequently, we see a growing demand for community-operated data warehouses that would
return data sovereignty to users. A community-driven approach would ensure that data isn't

7

manipulated or stored in hidden vaults accessible only to conglomerates but instead is managed
by a community transparently determining the rules of access, use, and profit. Users could
leverage their wallet (PKI infrastructure) as a signatory to determine how their online
interactions are written to the data warehouse, persisted or deleted, and their data shared with
third-party applications. Such an evolution toward self-custodied data would signify a
transformative shift, highlighting the inherent power of collective governance and the potential
of Web3 to restructure online hierarchies.

To make this demand a reality, the team at Space and Time realized zero knowledge-based
verification of queries/data processing would be necessary to ensure that outsourced (community
operated) data warehouse nodes in the decentralized network are not manipulating raw data or
the query results being returned to clients such as smart contracts or financial institutions.[2] For
self-custody of user data, row-based access control enabled via wallet-signed/wallet-governed
transactions sent to the network would allow end-users to determine their level of privacy, which
dapps can read their data, and how long their data persists. These end-user tools are built into the
Space and Time network and will be detailed in further sections on network design below.

2 The Solution: Decentralized Data Warehouse with
Proof of SQL

2.1 Introduction

Space and Time presents a solution to the query coprocessor requirements for smart contracts in
the form of a high-performance, tamperproof, and community-operated data warehouse loaded
with comprehensive data from major blockchains, verified using ZK-proofs. Space and Time
introduces two novel ideas: a decentralized data warehouse and the Proof of SQL protocol,
which together serve as the foundational Verifiable Compute Layer for Web3, allowing smart
contracts to query onchain and offchain data and verify the result in a trustless manner. These
novel ideas are deployed within the Space and Time network.

2.1.1 Decentralized Data Warehouse

The Space and Time data warehouse leverages hybrid transactional/analytical processing
(HTAP), coupling an online analytical processing (OLAP) engine for complex queries with an
in-memory cache for low-latency, online transactional processing (OLTP) workloads. We
leverage our own native MVCC transaction system for inserting data along with both Apache
Datafusion (low-latency OLAP) and Apache Spark (complex OLAP) query engines for powerful
analytic reads. Hybrid query processing eliminates the need for multiple database point-solutions
which plague traditional markets.B

8

Community-operated nodes in the decentralized network serve as a cost-effective hardware
accelerator for both SQL queries and ZK-proofs. Any arbitrary ZK-SNARK or STARK proof
circuits can be deployed on Space and Time nodes, including Proof of SQL, our own native ZK
circuit for extreme performance when proving query operations. Any arbitrary circuit running on
Space and Time nodes can be fed input data from our verifiable (ZK-compatible) blockchain
indexing service (nodes called Validators), ensuring that the inputs and outputs of the circuit
remain trustless end-to-end. This verifiable blockchain data is pre-loaded into the data warehouse
in real-time from major chains such as Ethereum, Bitcoin, zkSync, Polygon, Avalanche, BNB,
Sui, Sei, Base, etc. The actual hardware where the data warehouse query engines reside are split
across the network’s Transaction nodes and Prover nodes (more on this later).

2.1.2 Proof of SQL

Space and Time provides a groundbreaking ZK-proof that extends the security of Ethereum and
other major L1s, L2s, or L3s/appchains to SQL databases. The protocol cryptographically
guarantees to the client that both the underlying requested data (in many cases, indexed
blockchain data—although offchain data can be proven as well) is tamperproof and that the
computational steps of the query request have been executed accurately. Proof of SQL eliminates
the inefficiencies of consensus-driven data processing and offers practical, low-latency proof
generation at a scale sufficient for enterprise-grade applications. At the time of this writing, the
Space and Time team has benchmarked proving times under 3 seconds for queries against a
million-row table executed on a single NVIDIA GPU. In a later section of this document, we will
deep dive into the design of the Proof of SQL protocol.

2.1.3 Coprocessing Unlocked for Smart Contracts: Examples

Ultimately, Space and Time’s decentralized data warehouse running the Proof of SQL protocol
specifically allows smart contracts to “ask ZK-proven questions” regarding activity on their own
chain, other chains, or offchain. For example, a smart contract can request the SQL equivalent of:

● Liquidity Pools TVL: “Show me all liquidity pools with a TVL greater than $1M that
were deployed at least one month ago.”

● Liquidity Pools Collateral: “Sum up the total collateral available right now in all
liquidity pools our protocol operates across the following four chains…”

● DEX Loyalty Program: “Given that wallet ‘xyz’ is currently attempting a trade, show
me the number of prior trades this wallet has already made with DEX liquidity pool
address ‘xyz’.” (In order for the DEX contract can apply a discount or reward to the
current trade)

● LP position management (active/dynamic): “Alert me when the delta between $LINK
avg price and $ETH avg price has deviated more than 10%.” (for Uniswap v4 LP
rebalancing via hooks)

9

● Avg. Lending Rates Onchain: “Show me the volume-weighted average lending rate for
USDC on Aave, Maker, and Compound right now.”

● Wallets with Token Balance Criteria: “Show me all wallets that have a balance >
$1000 of $LINK token and have interacted with at least one Chainlink smart contract.”

● Bridge Transactions: “Show me all transactions across ‘xyz’ bridges that moved at least
$1M of tokens per wallet from Chain A to Chain B.”

● Gamer Achievements: “Show me all gamer wallets that have at least 2 hours of
playtime in-game, have minted our NFT, and played with ‘xyz’ weapon.”

● CeFi Options Markets: “Give me the at-the-money implied volatility of Bitcoin call
options expiring end-of-year averaged (volume-weighted) across Deribit and Binance.”

● Gas Oracles: “Show me the average gas used across all transactions on ‘xyz’ bridge over
the last hour.”

● Token Price Oracles: “Show me the volume-weighted average price of $LINK and
wrapped $LINK token traded across the hundreds of liquidity pools that swap $LINK:
Uniswap, PancakeSwap, Sushiswap, Trader Joe, Quickswap, etc…”

● Trustless ETFs/Indexes: “Create a volume-weighted index of the following 10 tokens
calculated from price oracle SQL calculations and deliver it to my contract as a single
price index…”

● Airdrop Criteria: “Roll up the wallet transaction histories of all wallets that meet the
following criteria for my airdrop…”

● Governance Engagement Score: “Roll up engagement scores for wallet activity that
meets the following criteria… where volume transacted in ‘xyz’ token, onchain
governance voting participation, and past NFT ownership will contribute to
rewards/discounts associated with a wallet engagement score.”

● Governance Qualification: “Find all wallets that have participated in governance votes
and rank them with a cross-section of the amount of ‘xyz’ token held and how long it’s
been held.”

● Weather (Onchain Insurance Payouts): “Show me the average wind speeds across all
reported weather stations in Miami, Florida today.”

● Github Activity (Open Source Contributions): “Rank developer wallets by their total
code contributions through ingested Github activity data.”

● Oracle Activity: “Show me total volume of oracle requests over the last hour that did not
complete the request within 2 blocks.”

● Pricing Blockspace: “Determine blockspace ‘market rates’ by averaging transaction gas
fees along with block header metadata.”

● NFT Floor Prices: “Look at NFT trading information onchain and find the current
average floor price for collection ‘xyz’.”

● Perp Funding Rates: “Calculate the implied volatility of both $ETH and $BTC using
onchain perpetual futures funding rates as a leading indicator.”

10

● Ethereum Staking Yields: “Show me the risk-minimized average returns on Ethereum
liquid staking via Lido over the past hour.”

2.2 Design Goals

The Space and Time solution was designed with the following goals around data processing:

1. End-to-End Trustless: Leverage a zero-knowledge approach for proving rather than
building yet another consensus-based, ‘trust-minimized’ approach with 12 to 30 nodes.
This removes reliance on a manually configured set of permissioned nodes while offering
improved scalability.

2. Verifiable Onchain: Ensure ZK-proofs generated offchain are verifiable within the
computational capabilities of the EVM, rather than only verifying offchain using a
third-party service such as oracle or relayer. Thus, a smart contract on any major chain
(consensus-based, or ZK-rollup chains) can verify the proof and relay the verified query
result to a client contract who made the request.

3. Familiar, Easy Developer Experience: Provide a UX common in Web2 so developers
don’t have to learn any extensive new frameworks or languages.

4. Support for Arbitrary Computations: Facilitate common data processing jobs that
require aggregations, sorts, filters, arithmetic, joins, etc, as well as turing-complete
arbitrary computations.

5. Low-Latency at Terabyte-Scale: Deliver verified query results back to a client smart
contract within seconds—not minutes—using a more scalable approach than redundant
computations proven with consensus. Must support queries over the entire chain state
(often multiple terabytes of data per chain since genesis).

6. Comprehensive Web3 Data Experience: Persist entire copies of each major chain
(including all events, transactions, blocks, logs, balances, token price changes, etc.) to
facilitate cross-chain queries against current and historical activity.

Given the limitations of arbitrary ZK-proof circuits and the potential strengths of a circuit
constructed around a SQL parser, we considered the following:

1. Optimized Circuit Design: We narrowed our initial focus to only SQL operations to
create highly optimized ZK circuits tailored for data processing. This level of specificity
allows for streamlined verification and reduced computational overhead.

2. Broad Applicability: SQL is ubiquitous—a widely understood and universally accepted
language for data operations that operates at the heart of both complex financial systems

11

and basic web applications. The basic constructs of SQL (selections, projections, joins,
and aggregations) cover most of the processing requirements for large datasets.

3. Relational Data Models: Blockchain indexing necessitates the decomposing of the
blockchain ledger into multiple tables (wallets, blocks, transactions, smart contract
logs/events, price feeds, etc.) in a relational data model. For example, the ‘wallets’ table
can be joined with the ‘blocks’ table, which can be joined with the ‘transactions’ table.
SQL is suitable for accessing structured, relational data.

2.3 Solution Components

Space and Time is a three-layer decentralized network of user-operated nodes serving distinct
purposes:

2.3.1 Provers (Proof of SQL Nodes)

Provers are GPU nodes within the decentralized network that execute queries and generate
ZK-proofs using a CUDA-based framework for acceleration (more on this in Section 4 below).
It’s important to note that the Prover nodes are not limited to the Proof of SQL ZK circuit. We
focused on future-proofing/unrestricting the overarching framework with a composable design
such that, in the future, additional ZK circuits for non-SQL operations can be seamlessly
integrated. Arbitrary ZK circuits (SNARKs and STARKs) can be deployed on a Prover node and
accelerated by Space and Time’s GPU framework.

2.3.2 Validators (Indexing Nodes)

A separate set of lightweight nodes called Validators, which do not require GPU hardware,
handle indexing and prep cryptographic fingerprints of the data to be leveraged by the Prover
nodes. During the indexing process, Validator nodes first request raw ledger data from remote
procedure call (RPC) providers (blockchain full nodes, archive nodes, etc.) which is then
decoded and transformed into the relational data model mentioned above.

A network of Validators work together to create and sign a cryptographic hash—a digital
fingerprint of the indexed data called a “commitment”—for each column of every table.
Validators send the indexed data to be prepped for storage by our Transaction nodes or by any
third-party data warehousing technology leveraging the Proof of SQL protocol.C Simultaneously,
the signed commitments are hashed to major chains to be later used during the onchain proof
verification component of Proof of SQL. We designed Proof of SQL around an updateable
commitment scheme, providing cryptographic assurance that each database row inserted during
indexing is accurate and untampered. Validator signatures of the commitments are crucial to
verifying every event within every transaction, across every block, spanning every major chain.

12

Commitment schemes similar to ours are used in many other zero-knowledge protocols, offering
composability with additional proof circuits. This verifiable (ZK-compatible) indexed data
produced by the Validators is offered by Space and Time as composable input data for other
community-developed prover circuits beyond Proof of SQL, or other third-party query tools
beyond Space and Time’s native data warehouse solution.

2.3.3 Transaction Serving (Consensus Nodes)

Transaction nodes are multifaceted, handling a number of critical network requirements around
BFT consensus, serialization/compression during data ingestion, and low-latency
non-tamperproof query serving. These nodes accept commitments on indexed blockchain data
provided by Validators and achieve consensus (threshold-signing the commitments, to be used
downstream with Proof of SQL) while buffering the raw indexed blockchain data for storage
compression. These nodes also use their consensus service to verify transactions and authenticate
clients in a decentralized manner.

Ingested data is handled with MVCC for consistency, and buffered into Apache Arrow record
batches in memory before being compressed to parquet files by the Transaction nodes, in
preparation for efficient storage. These nodes serve fast, non-ZK-proven queries using the
Apache Datafusion library. Another included service of these nodes are comprehensive REST
APIs for common blockchain data requests such as token transfers, balances, transactions
receipts/history, block metadata, gas oracles, price feeds, etc.

13

Figure 0: Space and Time Primary Components

2.3.4 Onchain and Offchain Components

Space and Time is seamlessly integrated with major blockchains, delivering ZK-proven query
results against onchain and offchain data to smart contracts. Below is an overview of how each
step is handled:

● Client Request (Onchain): Client contract sends a payment along with query
specification to the Space and Time Verifier contract, which then emits an event onchain
requesting query/proof fulfillment—data processing jobs for indexed or offchain data.

● Proof Generation (Offchain): A single Space and Time Prover node (GPU) within the
decentralized network listens for requests emitted onchain, then executes Proof of SQL
by generating a ZK-proof and the associated query result for the request. Both the result
and proof are submitted to a client for verification.

14

● Proof Verification (Onchain): The Space and Time Verifier contract accepts the query
result and proof from the Prover nodes. It verifies the proof and hands the verified query
result to the client that requested fulfillment.

● Community-developed ZK Services (Offchain): Open-source ZK circuits provided by
the community, like RISC Zero or Axiom, could be run on the Space and Time Prover
nodes (GPUs) for proving arbitrary computations beyond SQL against our verifiable
(ZK-compatible) indexed blockchain data.

Figure 1: Space and Time Verifiable Compute Layer Architecture

Space and Time aims to address the pervasive problem of fragmentation in Web3 by developing
a comprehensive solution that combines indexed data, proof generation and verification, and the
efficient relaying of data to smart contracts.

2.4 Ingestion Layer with Verifiable Indexing

Data ingestion into Space and Time leverages BFT consensus when the ingested data must be
cryptographically proven/verified prior to use for queries. For example, a client can define a
tamperproof table in Space and Time that persists stock prices from traditional equity markets,
with external business logic that captures real-time pricing information from twelve different
stock market data APIs simultaneously. Space and Time Transaction nodes can achieve
consensus on the price of Apple stock across these twelve different data providers, for example,
and only insert to shared storage (a public good within Space and Time) the threshold-signed,
consensus-approved price of Apple stock at the current moment. To add more security, we
developed a library which source data providers can leverage to cryptographically sign data at
the origin before ingestion, and our Provers integrate these signatures when proving against such
underlying data.

15

Similarly, with indexed blockchain data that our network captures, we are onboarding a massive
number of Validator nodes (indexers) to redundantly process the entire state of popular chains
like Ethereum, Bitcoin, Polygon, zkSync etc. Each Validator runs a light client RPC service
internally to get the latest block/transactions/events, decodes and transforms the data into a
relational database format, and finally builds cryptographic commitments on recently indexed
blocks. Validators submit those commitments for consensus-approval by the Transaction nodes,
which then buffer the raw indexed data for efficient storage. This process is aware of block
reorgs, and offers developers endpoints for both fresh, non-finalized blockchain data as well as
probabilistic-finalized blockchain data after a few minutes, depending on the chain.

Through this process, Space and Time is commoditizing indexed blockchain data, and offering it
essentially free through our network (we only charge for compute costs of queries executed in
Space and Time, not the underlying data), as well as delivering these datasets as input data to
other third-party zero knowledge solutions and third-party data warehouse solutions.

2.5 Community-Operated Data Warehouse Design

The decentralized data warehouse serves as an integral resource for smart contracts to efficiently
offload computation and data storage. The solution enhances chain scalability, enables faster
contract execution, and reduces the amount of gas spent onchain while allowing the entire stack
to remain decentralized and community-owned. A growing number of developers are even
starting to build ZK-rollups leveraging Proof of SQL as the L2 or L3 ledger that’s settled on a
main chain periodically, via a rollup contract on that main chain querying the ledger in Space and
Time for updated account balances batched in a single transaction. To align with the
decentralized ethos of Web3, the nodes that make up this data warehousing platform must be
community owned and operated, enabling:

● Decentralization with Self-Custody: Data is stored and processed across a network of
community-owned and operated nodes. Role-based and row-based access to each
table/ledger in the data warehouse is governed by decentralized mechanisms using
“biscuits,”[3] a budding approach to encoding user secrets and sharing permissions around
CRUD operations to a table/ledger. This also facilitates self-custody of data in Space and
Time, where an end-user can write directly to “public write-permissioned” tables/ledgers
without intermediaries, and subsequently remove content or govern how other dapps that
read from these tables/ledgers can access content.

● Offloading Compute and Storage: To maintain the efficiency and speed of onchain
operations, smart contracts can offload to Space and Time any computationally intensive
processes, account balance management, or voluminous storage requirements.

16

● Transparent data processing vs. ZK for privacy: Varying business requirements across
a wide range of use cases require that some dapp developers transparently publish all data
as “public read” tables/ledgers to their individual communities, while others must hide
data processing to protect sensitive information. For example, a protocol that whitelists
wallet addresses and calculates risk scores (for compliance reasons, OFAC protection,
fraud prevention, etc) may want to transparently publish their whitelist as a “public
read-permissioned” table in Space and Time, as well as the actual model used to define
risk scores associated with each wallet. On the other hand, a protocol that enables
undercollateralized onchain lending may want to provide query results to smart contracts
around real-world credit scores, without actually revealing those credit scores to the
public. Proof of SQL allows a smart contract to ask the SQL equivalent of “is this user’s
credit score greater than 600?” and prove that the ‘yes/no’ response from Space and Time
is accurate without revealing the actual credit score.

● Network Effects and Scalability: As we integrate more chains and more participants
that join the network, this not only increases protocol security but also the public datasets
available (as well as third-party ecosystem integrations). This is traditionally known as
“data gravity” and is a lucrative focus for traditional cloud data warehouse vendors.

2.6 Infinite Tables join Web2 with Web3

Space and Time capitalizes on the moats of both data warehousing and Web3 protocol security to
generate powerful network effects. By marrying the trustless properties of blockchain technology
with the scale and efficiency of a data warehouse, Proof of SQL drives a new market standard of
verifiable data processing at scale across both Web2 and Web3.

Figure 2: Marrying Scale and Provability with Proof of SQL

17

On one hand, smart contracts can transact with our Verifier contracts onchain, incurring fees for
data retrieval and verification. Simultaneously, enterprises can access our vast blockchain data
(or their own ingested data to an infinite number of tables/ledgers, similar to traditional data
warehousing), paying in fiat, which is then converted to be used to enhance our native tokens'
utility. This dual model ensures consistent demand while countering the issues of centralized
systems lacking trust, especially for high-value transactions. Node operators, following specific
economic guidelines, guarantee up-to-date, accurate, and immediate data even for
non-ZK-proven query execution. This design minimizes vulnerabilities while remaining practical
(particularly in terms of cost structure) for:

● Offchain Analytics: The Space and Time solution is suitable as both a decentralized
backend for dapps and as an analytics platform with comprehensive blockchain data.
Direct access to Space and Time data warehouse nodes offchain can be achieved with
REST APIs and JDBC connection proxies deployed on the Validator nodes; for both
tamperproof queries secured cryptographically by Proof of SQL as well as unverified
queries secured optimistically by token-economic security.

● Cross-Chain Interoperability: Smart contracts on “Chain B” can query current or
historical data (entire chain state) from “Chain A”, with arbitrary SQL business logic
deployed en route.

● Joining Onchain and Offchain Data: Developers often write complex queries that join
offchain data (such as TradFi market data, in-game activity, or traditional data lake reads
for Web2 business processes) with onchain data (such as token swaps or perps, NFT
activity, or blockchain rewards/metadata) while still retaining ZK-proven computation of
query results if needed.

2.7 Verification in Smart Contracts vs. Oracle Networks

The Space and Time Verifier smart contracts deployed to a variety of popular EVM chains can
natively verify the ZK-proofs submitted by Prover nodes, ensuring data integrity and authenticity
before relaying verified query results back to client contracts which initiated the requests. We are
eagerly awaiting deployment of the BLS 12-381 curve pre-compile implemented (but not yet
deployed) via EIP-2537. Until then, gas required for proof verification on Ethereum mainnet will
present a potential obstacle to adoption. To combat this, we are also deploying our ZK-Verifier as
a service on Chainlink’s DON in order to facilitate low-cost, consensus-based, offchain
verification for developers already familiar with Chainlink oracle jobs.

Here’s how it works: Client contracts send a payment along with job spec to Chainlink contracts,
and then Chainlink oracle nodes request the query result and associated proof from Space and
Time endpoints. Once a query result and associated proof are submitted back to the DON, then

18

multiple oracle nodes in the DON redundantly verify the proof offchain before relaying the
verified query result back to the requesting client contract. The extreme performance of Proof of
SQL, accelerated by NVIDIA GPUs, ensures that most requests can be returned within
Chainlink’s required response latency for offchain reporting (consensus).

3 Design of the Proof of SQL Protocol
Within the Space and Time network, Proof of SQL is a novel cryptographic data-processing
protocol that allows verifiable outsourced SQL execution using zero-knowledge proofs. This
enables Space and Time to extend the security of Ethereum and other major L1s, L2s, or
L3s/appchains to SQL databases. The protocol cryptographically guarantees to the client both
that the underlying requested data (in many cases, indexed blockchain data) is tamperproof, and
that the computational steps of the query request have been executed accurately. Proof of SQL
eliminates the inefficiencies of consensus-driven data processing and offers practical,
low-latency proof generation at a scale sufficient for enterprise-grade applications.

We have designed this protocol with several goals in mind. First, the protocol needs to be
extremely fast, not just for the verifying party, but for the round-trip execution time. This
requires a design that is built from the ground up. Second, we have built this to be extremely
developer-friendly: SQL is the most popular data query language and provides a familiar UX for
anyone trying to start building a data-forward application. Finally, this protocol needs to
facilitate complex data processing rather than simply running serial compute or blob data
retrieval.

There are two parties involved in the protocol: the client sending the query, and the database
service returning the result. We will name these two parties the Verifier and the Prover,
respectively. In practice, the Verifier does not need to be the one actually sending the query,
instead the Verifier can be any trusted party, such as a smart contract. This type of protocol is
necessary when an application has either restricted compute or restricted storage, but still needs a
security guarantee that the analytics run on data has been executed correctly, and that the
underlying data has not been tampered with. The Prover is computationally intensive, whereas
the Verifier is lightweight and designed to be executed on client devices or within smart contracts
(which have extremely limited storage and computation capability).

A key architectural concept worth highlighting here is the idea of a digest, or commitment. To
prevent the data in a table from being modified, we ensure that a commitment of that data is kept.
The Verifier must have trustless access to this commitment to be able to detect any tampering.
This commitment can be thought of as a type of digital fingerprint: a lightweight digest of the
data in the table.

19

3.1 Overall Architecture

In this section, we describe the general design and architecture behind the Proof of SQL
protocol. The following sections go into more details about how the proof is constructed. To
summarize the following sections: Section 3.1 gives an overview of the basic data flow, Section
3.2 describes the parsing of the query, Section 3.3 describes the query execution and proof setup,
Section 3.4 introduces some mathematical notation that is used in later sections, Section 3.5
gives some examples of the protocol described in Section 3.3, Section 3.6 describes the
sum-check protocol, which is a key primitive of the proof, and Section 3.7 describes the
commitment scheme that we use.

3.1.1 Data Ingestion

There are two types of interactions between the Verifier and the Prover. The first type of
interaction is data ingestion and the second is a query request. Both of these are initiated by the
Verifier. This verifier could be a smart contract, a decentralized application, or any party
interested in consuming data. In practice, the actual data source does not need to be the Verifier
themselves, but can instead be a trusted data source. For example, the data could come from a
trusted central party, from a trustless protocol such as the Space and Time ZK-compatible
blockchain indexing solution, or from the Verifiers themselves. However, for the sake of this
architecture discussion, we will combine the roles of the data source with those of the Verifier.
During data ingestion, the Verifier wishes to send data to the Prover so that it can later query that
data. However, to ensure that the data will be untampered, the Verifier needs to compute
commitments of this data—a core concept aforementioned. The Verifier has access to the
commitment of data that is in a table, while the Prover holds onto the actual data. Without this
commitment, the Prover would be able to modify the data at will, or return incorrect execution
against the data.

When a service or a client sends data that is to be added to the database, that data is routed to the
Verifier so that the Verifier can create a commitment to that data. This commitment is a small
“digest” of the data but holds enough information for the rest of the protocol to ensure that the
data is not tampered with. After creating this commitment, the Verifier can route the data to the
database for storage. The Verifier stores this commitment for later usage. (Note: to decrease
latency, the data is physically routed immediately, but the Verifier only "locks in" the data after
creating this commitment).

An important design constraint is that the commitment must be updatable. (See section 4.7) In
other words, suppose that the Verifier already holds the commitment to a specific table, but new
data is to be ingested and appended to the table. To do this efficiently, the Verifier must be able to
combine the old commitment with the incoming data to create a new commitment to the entire

20

updated table. The key constraint here is that the Verifier must be able to do this without access
to the old existing data.

Figure 3: Sequence Diagram of Data Ingestion

3.1.2 Query Request

The second type of interaction between the Verifier and the Prover is the query request, where
the Verifier wants to have some data analytics executed on the data that the Prover is holding and
for the result to be returned to the Verifier. The Verifier is able to trust this result because they are
holding onto, or have trustless access to, a commitment to the underlying data.

When a service, client, or the Verifier themselves send a query request, that request is routed to
the Prover. At this point, the Prover parses the query, computes the correct result, and produces a
proof. It then sends the query result and the proof to the Verifier. Once the Verifier has this proof,
it can use the commitment to check the proof against the result and verify that the Prover has
produced the correct result to the query request. The majority of this section (4) is dedicated to
describing how this proof is constructed and verified. See the next subsection (4.1.3) for an
overview.

21

Figure 4: Sequence Diagram of Query Request from Verifier to Prover

3.1.3 Proof Protocol Overview

In the following sections, we go into detail about how the Prover generates a proof, and how the
Verifier checks that proof. Broadly, this can be divided into four sections:

1. Parsing: The query text must be parsed into a format that the Prover and Verifier can
agree to. (Section 4.2)

2. Query Execution and Protocol Builder: This step is effectively a “proof setup” phase.
This is where the ZK “circuit” is created and the query is actually executed. (Section 4.3)

3. Relation Prover: This is the step in which the bulk of the proof is actually generated. We
utilize the multilinear sum-check protocol here. (Section 4.5)

4. Commitment Evaluator. The last step of the sum-check protocol requires a commitment
opening. (Section 4.6)

Figure 5: Proof Protocol Overview Diagram

3.2 Parsing

The first step in the process of creating a Proof of SQL proof is parsing the SQL text. This
effectively acts as a preprocessing step, creating an AST that can be consumed by the remainder

22

of the process. See this resource for a more in-depth explanation of how many query engines
work.

The parser works similarly to other parsers: by first creating an abstract syntax tree (AST). This
AST is a tree of SQL operations and components. For instance, consider the following query,
which is converted to the AST shown below:

SELECT hash, timestamp FROM blocks WHERE block > 1000 AND transaction_count = 0

Figure 6: Diagram of AST Nodes for Example Query

3.3 Query Executor and Interactive Protocol Builder

The second step in the process of creating a Proof of SQL proof is to execute the query and build
the protocol that will produce the proof. The resulting protocol is an interactive protocol, in part
because the protocol depends on the data that is in the database. While this protocol is described
as an interactive protocol, the Fiat-Shamir transformation allows the proof to be non-interactive.
In the language of most other ZK-protocols, this is the step where the circuit is designed.

To execute the query and build the proof, the Prover passes over the AST nodes and does the
following four things for each node:

1. Query Execution
2. Witness Generation
3. Commitment Computation
4. Constraint Building

To verify the query, the Verifier also passes over the AST node. When doing this, the Verifier
only needs to do the last step out of the four that the Prover does (that is, constraint building).

23

https://howqueryengineswork.com/

3.3.1 Query Execution / Witness Generation

First, the Prover must generate the result of the query and any intermediate values needed to
produce the result and proof. The word “witness” is used to mean intermediate values that are
needed to verify certain steps of the query execution, but aren’t known by the Verifier. The
Verifier doesn’t actually need to have knowledge of what the witness is, but the protocol
guarantees that such a witness exists. The existence of a valid witness is sufficient to prove that
the result is correct. This is, in part, why the term zero-knowledge applies, since the Verifier has
zero knowledge of the witness.

Query execution and witness generation are almost the same, and are tightly linked. The SQL
execution engine operates on table data in a columnar fashion, and produces intermediate values.
The witness is the intermediate columns that are needed to verify the SQL execution. In some
situations, additional witness columns on top of the ones needed just for execution are also
needed.

As an example, we will look at the previous query again, and will use the following table as the
blocks table:

SELECT hash, timestamp FROM blocks WHERE block > 1000 AND transaction_count = 0

block hash timestamp transaction_count

997 0xef6e7e8 01:23 2

998 0xad5674d 01:33 1

999 0xcbc4567 01:44 0

1000 0x1ea13ea 01:52 4

1001 0xc460f97 02:04 0

1002 0x96b501c 02:15 6

The output of the Equals, Inequality, and And nodes would be:

Equals
(transaction_count = 0)

Inequality
(block > 1000)

And

0 (false) 0 (false) 0 (false)

0 (true) 0 (false) 0 (false)

24

1 (true) 0 (false) 0 (false)

0 (false) 0 (false) 0 (false)

1 (true) 1 (true) 1 (true)

0 (false) 1 (true) 0 (false)

While none of these are the actual result, they are used in the computation of the result, and are
needed to verify that the result is correct.

3.3.2 Commitment Computation / Multiple Rounds

Once the witness has been computed, it must be committed to, ensuring that the Prover cannot
“change its mind” after the fact. This is the most computationally expensive portion, and we
push this computation to GPUs. For the most part, the commitment scheme that we use can be
treated as a “black box” compared with the rest of the protocol. See section 4.7 for more details
on the exact commitment scheme used.

Some of the nodes in the AST required a two-round protocol to efficiently create a witness. This
is because the witness depends on random challenges from the Verifier. As a result, the
Commitment Computation step and Witness Generation step execute twice. After the first
computation of the commitments, new random challenges are sent from the Verifier. See, for
example, the group by protocol. When the commitment computation is done in a two-rounds
fashion, the Verifier simulates the interactive protocol via the Fiat Shamit heuristic. This is done
before passing over the AST nodes, meaning that the Verifier only needs one pass through the
nodes.

3.3.3 Constraint Building

Finally, polynomial constraints are created that specify relationships that must hold between the
witness columns. This is a very natural mapping because SQL is a relational language whose
queries correspond cleanly to these polynomial relationships/constraints between the
intermediate columns of the SQL execution. See sections 3.5 and 3.6 for more details on what
these polynomial constraints look like.

3.4 Notation

We will briefly discuss some of the mathematical notation needed for the following sections.
Most of this notation follows the literature fairly closely, although we diverge in some areas so
that we can write things more concisely.

25

Since we are dealing primarily with data in tables that are processed in a columnar fashion, we
will use notation that reflects this. We will notate columns of data with capital letters such as

where is the number of rows. If needed, we can embed in a larger vector space
simply by appending 's to the column. Furthermore, we can think of as a multilinear
polynomial in variables. That is, there is a unique multilinear

such that for .
In other words, the bit representation of the index of a value gives the coordinates that
evaluate to that value for .

As an example, if , then

.

We write to denote entrywise multiplication. So, means that for

all . We write to denote the sum of the (non-zero) entries of . So,

means that .

Finally, we let denote the column that is 1 for the first entries and 0 otherwise.

3.5 Example Subprotocols
The following examples are explicit examples of nodes of the query plan. The first is an example
of a boolean expression and the second is an example of a sum aggregation node.

3.5.1 Equality Protocol Builder

One of the simplest examples is an equality expression: Consider the equals node from the
example in sections 3.1 and 3.2, where we let be the transaction_count column and be the
result of the Equals node.

26

https://www.codecogs.com/eqnedit.php?latex=A%5Cin%5Cmathbb%7BF%7D%5En#0
https://www.codecogs.com/eqnedit.php?latex=n#0
https://www.codecogs.com/eqnedit.php?latex=A#0
https://www.codecogs.com/eqnedit.php?latex=0#0
https://www.codecogs.com/eqnedit.php?latex=A#0
https://www.codecogs.com/eqnedit.php?latex=%5Cnu%20%3D%20%5Clceil%5Clog_2(n)%5Crceil#0
https://www.codecogs.com/eqnedit.php?latex=f_A%5Cin%5Cmathbb%7BF%7D%5Bx_0%2C%5Cldots%2Cx_%7B%5Cnu-1%7D%5D#0
https://www.codecogs.com/eqnedit.php?latex=f_A(x_0%2C%5Cldots%2Cx_%7B%5Cnu-1%7D)%3DA%5Cleft%5B%5Csum_%7Bi%3D0%7D%5E%5Cnu%20x_i2%5Ei%5Cright%5D#0
https://www.codecogs.com/eqnedit.php?latex=(x_0%2C%5Cldots%2Cx_%7B%5Cnu-1%7D)%5Cin%5C%7B0%2C1%5C%7D%5E%5Cnu#0
https://www.codecogs.com/eqnedit.php?latex=A#0
https://www.codecogs.com/eqnedit.php?latex=f_A#0
https://www.codecogs.com/eqnedit.php?latex=A%3D(100%2C101%2C102%2C103%2C104)#0
https://www.codecogs.com/eqnedit.php?latex=%5Cbegin%7Balign*%7Df_A(X)%20%26%3D%20100(1-x_0)(1-x_1)(1-x_2)%5C%5C%26%5Cquad%2B101x_0(1-x_1)(1-x_2)%5C%5C%26%5Cquad%2B102(1-x_0)x_1(1-x_2)%5C%5C%26%5Cquad%2B103x_0x_1(1-x_2)%5C%5C%26%5Cquad%2B104(1-x_0)(1-x_1)x_2%5Cend%7Balign*%7D#0
https://www.codecogs.com/eqnedit.php?latex=A%5Ccdot%20B#0
https://www.codecogs.com/eqnedit.php?latex=A%5Ccdot%20B%3D0#0
https://www.codecogs.com/eqnedit.php?latex=A%5Bi%5D%5Ccdot%20B%5Bi%5D%3D0#0
https://www.codecogs.com/eqnedit.php?latex=i#0
https://www.codecogs.com/eqnedit.php?latex=%5Csum%20A#0
https://www.codecogs.com/eqnedit.php?latex=A#0
https://www.codecogs.com/eqnedit.php?latex=%5Csum%20A%5Ccdot%20B%3D0#0
https://www.codecogs.com/eqnedit.php?latex=%5Csum_%7Bi%3D0%7D%5E%7Bn-1%7D%20A%5Bi%5D%20%5Ccdot%20B%5Bi%5D%3D0#0
https://www.codecogs.com/eqnedit.php?latex=I_%5Cell#0
https://www.codecogs.com/eqnedit.php?latex=%5Cell#0
https://www.codecogs.com/eqnedit.php?latex=C#0
https://www.codecogs.com/eqnedit.php?latex=R#0

It is straightforward to show that this result is correct if and only if there exists a witness column,
, such that, and . These two equations are the constraints that

must be satisfied. It happens that the following column is a valid witness.

- transaction_count - result of Equals node
(transaction_count = 0)

2 0 (false)

1 0 (false)

0 1 (true)

4 0 (false)

0 1 (true)

6 0 (false)

3.5.2 Group By Protocol Builder
For this example, we will describe a simplified version of an aggregation/GROUP BY clause.
Consider the query SELECT from_wallet, SUM(amount) FROM table GROUP BY from_wallet

for the table:

- amount - from_wallet to_wallet

74 1025 1034

24 1034 1099

12 1025 1099

56 1099 1025

22 1099 1000

45 1025 1025

The correct result is:

- from_wallet (result) - sum (result)

1025 175

27

https://www.codecogs.com/eqnedit.php?latex=P#0
https://www.codecogs.com/eqnedit.php?latex=C%5Ccdot%20R%3D0#0
https://www.codecogs.com/eqnedit.php?latex=1-R%3DC%5Ccdot%20P#0
https://www.codecogs.com/eqnedit.php?latex=C#0
https://www.codecogs.com/eqnedit.php?latex=R#0
https://www.codecogs.com/eqnedit.php?latex=P#0
https://www.codecogs.com/eqnedit.php?latex=2%5E%7B-1%7D#0
https://www.codecogs.com/eqnedit.php?latex=1#0
https://www.codecogs.com/eqnedit.php?latex=0#0
https://www.codecogs.com/eqnedit.php?latex=4%5E%7B-1%7D#0
https://www.codecogs.com/eqnedit.php?latex=0#0
https://www.codecogs.com/eqnedit.php?latex=6%5E%7B-1%7D#0
https://www.codecogs.com/eqnedit.php?latex=A#0
https://www.codecogs.com/eqnedit.php?latex=F#0
https://www.codecogs.com/eqnedit.php?latex=T#0
https://www.codecogs.com/eqnedit.php?latex=W#0
https://www.codecogs.com/eqnedit.php?latex=S#0

1034 24

1099 34

It can be shown that the result of this query is correct if and only if there exist witness columns
and such that the following hold for some randomly chosen :

, , and where is the number of
rows in the original table, while is the number of rows in the result.

It is important to note that and depend on , while and do not. If was chosen
before the commitments of and were sent to the Verifier, the values of and could be
changed based on the value of allowing a malicious Prover to provide the wrong result. In
other words, must be a function of and .

Suppose, for example, that happened to be . Then, we would have the following:

74 1025 1025 175

24 1034 1034 24

12 1025 1099 34

56 1099 0 0 0

22 1099 0 0 0

45 1025 0 0 0

In summary, this would be the sequence of interactions in the interactive version of the protocol:

● Verifier → Prover: The query: SELECT from_wallet, SUM(amount) FROM table GROUP
BY from_wallet

● Prover → Verifier: The results and any intermediate results: and .

● Verifier → Prover: Random challenges: .

● Prover → Verifier: Witness columns: and .

● Verifier and Prover: Remaining interactive protocol (sum-check + commitment opening)

28

https://www.codecogs.com/eqnedit.php?latex=Q#0
https://www.codecogs.com/eqnedit.php?latex=R#0
https://www.codecogs.com/eqnedit.php?latex=%5Cbeta#0
https://www.codecogs.com/eqnedit.php?latex=%5Csum%20A%20%5Ccdot%20Q%20-%20S%20%5Ccdot%20R%3D0#0
https://www.codecogs.com/eqnedit.php?latex=Q%5Ccdot%20(F%20%2B%20%5Cbeta)%20%3D%20I_n#0
https://www.codecogs.com/eqnedit.php?latex=R%5Ccdot%20(W%20%2B%20%5Cbeta)%20%3D%20I_r#0
https://www.codecogs.com/eqnedit.php?latex=n#0
http://www.sciweavers.org/tex2img.php?bc=Transparent&fc=Black&im=jpg&fs=100&ff=modern&edit=0&eq=r#0
https://www.codecogs.com/eqnedit.php?latex=Q#0
https://www.codecogs.com/eqnedit.php?latex=R#0
https://www.codecogs.com/eqnedit.php?latex=%5Cbeta#0
https://www.codecogs.com/eqnedit.php?latex=W#0
https://www.codecogs.com/eqnedit.php?latex=S#0
https://www.codecogs.com/eqnedit.php?latex=%5Cbeta#0
https://www.codecogs.com/eqnedit.php?latex=W#0
https://www.codecogs.com/eqnedit.php?latex=S#0
https://www.codecogs.com/eqnedit.php?latex=W#0
https://www.codecogs.com/eqnedit.php?latex=S#0
https://www.codecogs.com/eqnedit.php?latex=%5Cbeta#0
https://www.codecogs.com/eqnedit.php?latex=%5Cbeta#0
https://www.codecogs.com/eqnedit.php?latex=W#0
https://www.codecogs.com/eqnedit.php?latex=S#0
https://www.codecogs.com/eqnedit.php?latex=%5Cbeta#0
https://www.codecogs.com/eqnedit.php?latex=30000#0
https://www.codecogs.com/eqnedit.php?latex=A#0
https://www.codecogs.com/eqnedit.php?latex=F#0
https://www.codecogs.com/eqnedit.php?latex=W#0
https://www.codecogs.com/eqnedit.php?latex=S#0
https://www.codecogs.com/eqnedit.php?latex=Q#0
https://www.codecogs.com/eqnedit.php?latex=R#0
https://www.codecogs.com/eqnedit.php?latex=31025%5E%7B-1%7D#0
https://www.codecogs.com/eqnedit.php?latex=31025%5E%7B-1%7D#0
https://www.codecogs.com/eqnedit.php?latex=31034%5E%7B-1%7D#0
https://www.codecogs.com/eqnedit.php?latex=31034%5E%7B-1%7D#0
https://www.codecogs.com/eqnedit.php?latex=31025%5E%7B-1%7D#0
https://www.codecogs.com/eqnedit.php?latex=31099%5E%7B-1%7D#0
https://www.codecogs.com/eqnedit.php?latex=31099%5E%7B-1%7D#0
https://www.codecogs.com/eqnedit.php?latex=31099%5E%7B-1%7D#0
https://www.codecogs.com/eqnedit.php?latex=31025%5E%7B-1%7D#0
https://www.codecogs.com/eqnedit.php?latex=W#0
https://www.codecogs.com/eqnedit.php?latex=S#0
https://www.codecogs.com/eqnedit.php?latex=%5Cbeta#0
https://www.codecogs.com/eqnedit.php?latex=Q#0
https://www.codecogs.com/eqnedit.php?latex=R#0

3.6 Relation Proof Protocol (Sum-check)

The first two steps of the protocol (sections 3.2 and 3.3) allow the Prover and Verifier to agree on
a collection of relations between columns of data and provide the Verifier with commitments to
these columns of data. The next step is for the Prover to convince the Verifier that these relations
hold.

Once the first two steps of the protocol are complete, the Prover has constructed a collection of
witness columns and a collection of polynomial constraints that these witness columns satisfy.
Additionally, the Prover has sent commitments to each of the witness columns to the Verifier,
and the Verifier has constructed the same collection of polynomial constraints and sums.

In other words, the Prover has a collection of columns and the Verifier has the
commitments . Furthermore, both the Prover and Verifier have
agreed on a collection of relations and sums between these vectors: a collection of low degree
polynomials and .

It is the Prover’s job to show that for each . Note: this is the same as
saying that for all , but not for arbitrary .

Additionally, the Prover must show that for each .

At this point, the Verifier sends the Prover the challenges

. These gives a structured challenge column, , defined by for
. This, in turn, allows the Prover and Verifier to agree on the following combined

constraint:

This constraint holds with high probability exactly when the original constraints hold as well.
This is proven using the multilinear sum-check protocol. See section 4.1 of [Thaler][5] for a
thorough explanation of how sum-check works. The last step of sum-check is the evaluation of
the combined polynomial at a random point, which reduces to evaluations of at that
point. These evaluations are proven using the commitment scheme and the commitments

, described in the next section.

3.7 Commitment Evaluator

After the first three steps (sections 3.1, 3.2, 3.5), the Prover has produced a proof of the query
along with the result with only one missing component: the opening/evaluation of the

29

http://www.sciweavers.org/tex2img.php?bc=Transparent&fc=Black&im=jpg&fs=100&ff=modern&edit=0&eq=A_0%2C%5Cldots%2CA_m#0
http://www.sciweavers.org/tex2img.php?bc=Transparent&fc=Black&im=jpg&fs=100&ff=modern&edit=0&eq=Commit(A_0)%2C%5Cldots%2CCommit(A_m)#0
http://www.sciweavers.org/tex2img.php?bc=Transparent&fc=Black&im=jpg&fs=100&ff=modern&edit=0&eq=p_0%2C%5Cldots%2Cp_%7B%5Cell-1%7D%5Cin%5Cmathbb%7BF%7D%5By_0%2C%5Cldots%2Cy_m%5D#0
http://www.sciweavers.org/tex2img.php?bc=Transparent&fc=Black&im=jpg&fs=100&ff=modern&edit=0&eq=q_0%2C%5Cldots%2Cq_%7Bs-1%7D%5Cin%5Cmathbb%7BF%7D%5By_0%2C%5Cldots%2Cy_m%5D#0
http://www.sciweavers.org/tex2img.php?bc=Transparent&fc=Black&im=jpg&fs=100&ff=modern&edit=0&eq=p_k(A_0%2C%5Cldots%2CA_m)%3D0#0
http://www.sciweavers.org/tex2img.php?bc=Transparent&fc=Black&im=jpg&fs=100&ff=modern&edit=0&eq=k#0
http://www.sciweavers.org/tex2img.php?bc=Transparent&fc=Black&im=jpg&fs=100&ff=modern&edit=0&eq=p_k(f_%7BA_0%7D(X)%2C%5Cldots%2Cf_%7BA_m%7D(X))%3D0#0
http://www.sciweavers.org/tex2img.php?bc=Transparent&fc=Black&im=jpg&fs=100&ff=modern&edit=0&eq=X%5Cin%5C%7B0%2C1%5C%7D%5E%5Cnu#0
http://www.sciweavers.org/tex2img.php?bc=Transparent&fc=Black&im=jpg&fs=100&ff=modern&edit=0&eq=X#0
http://www.sciweavers.org/tex2img.php?bc=Transparent&fc=Black&im=jpg&fs=100&ff=modern&edit=0&eq=%5Csum%20p_k(A_0%2C%5Cldots%2CA_m)%3D0#0
http://www.sciweavers.org/tex2img.php?bc=Transparent&fc=Black&im=jpg&fs=100&ff=modern&edit=0&eq=k#0
http://www.sciweavers.org/tex2img.php?bc=Transparent&fc=Black&im=jpg&fs=100&ff=modern&edit=0&eq=%5Crho_0%2C%5Cldots%2C%5Crho_%7B%5Cnu-1%7D%2C%20%5Calpha_0%2C%5Cldots%2C%5Calpha_%7B%5Cell-1%7D%2C%5Cbeta_0%2C%5Cldots%2C%5Cbeta_%7Bs-1%7D#0
http://www.sciweavers.org/tex2img.php?bc=Transparent&fc=Black&im=jpg&fs=100&ff=modern&edit=0&eq=Q#0
http://www.sciweavers.org/tex2img.php?bc=Transparent&fc=Black&im=jpg&fs=100&ff=modern&edit=0&eq=f_Q(x_0%2C%5Cldots%2Cx_%7B%5Cnu-1%7D)%3D%5Crho_0%5E%7Bx_0%7D%5Ccdots%20%5Crho_%7B%5Cnu-1%7D%5E%7Bx_%5Cnu-1%7D#0
http://www.sciweavers.org/tex2img.php?bc=Transparent&fc=Black&im=jpg&fs=100&ff=modern&edit=0&eq=X%5Cin%5C%7B0%2C1%5C%7D%5E%5Cnu#0
http://www.sciweavers.org/tex2img.php?bc=Transparent&fc=Black&im=jpg&fs=100&ff=modern&edit=0&eq=%5Csum%20Q%5Ccdot(%5Calpha_0%20p_0%2B%5Ccdots%5Calpha_%7B%5Cell-1%7Dp_%7B%5Cell-1%7D)%2B%5Cbeta_0q_0%2B%5Ccdots%2B%5Cbeta_%7Bs-1%7Dq_%7Bs-1%7D%3D0#0
http://www.sciweavers.org/tex2img.php?bc=Transparent&fc=Black&im=jpg&fs=100&ff=modern&edit=0&eq=A_0%2C%5Cldots%2CA_m#0
http://www.sciweavers.org/tex2img.php?bc=Transparent&fc=Black&im=jpg&fs=100&ff=modern&edit=0&eq=Commit(A_0)%2C%5Cldots%2CCommit(A_m)#0

commitments/columns of data. There are a variety of commitment schemes that enable this, so
for the rest of the protocol, this can be treated as a black box. However, because the biggest
computational cost revolves around the commitments and their uses, the decision of which
commitment scheme we use is important. We are using the Dory commitment scheme[6]. There
are several motivating factors that drive this choice. We will list them (roughly) in order of
importance, all of which Dory satisfies.

1. Updateable/Homomorphic Commitments: As a reminder, in the Proof of SQL
protocol, the Prover holds the data that is in the tables, while the Verifier holds onto the
commitments. Since the vast majority of tables in a database are not static, there needs to
be some mechanism by which the Verifier can update commitments when new data is
appended to a table. More specifically, we want some function such that

new commitment = Update(old commitment, appended data)

In other words, data access is not required to update commitments to the data. Any
homomorphic commitment scheme has the property. Dory is a homomorphic
commitment scheme. In addition to being updateable, homomorphism has other helpful
properties, such as supporting deltas/snapshots.

2. Efficient Verifier: Because the amount of data that is being queried against can be very
large, we need the Verifier to have sub-linear performance. Dory's verifier runs in

time.
3. Transparency: While this is a beneficial property for any protocol, it is particularly

important for Proof of SQL because of large data volumes that exist. Without a
transparent setup, there would need to be a trusted setup, which would require an upper
bound on table size. While a large upper bound could be set, making this sufficiently
large would require a very large trusted setup.

4. Partition Friendly: In any efficient database, partitioning and other smart indexing
schemes are essential to running performant queries. In particular, we need to be able to
run queries without needing to process all of the data in the tables. In addition to being
homomorphic, Dory is a 2D commitment scheme, and the Prover time is in
certain circumstances. This means that access to all of the data is not needed for certain
evaluations.

Conceptually, we can describe the Dory commitment scheme as a commitment scheme to a
matrix. In the simplest form, we fix the height of the matrix to be and allow it to

grow arbitrarily wide, padded with 0s. In other words, for we let
and define to be the matrix such that

where is defined and elsewhere.

30

https://www.codecogs.com/eqnedit.php?latex=O(%5Clog%20n)#0
https://www.codecogs.com/eqnedit.php?latex=O(%5Csqrt%7Bn%7D)#0
https://www.codecogs.com/eqnedit.php?latex=2%5Em%5Ctimes%202%5Em#0
https://www.codecogs.com/eqnedit.php?latex=N#0
https://www.codecogs.com/eqnedit.php?latex=A%5Cin%5Cmathbb%7BF%7D%5En#0
https://www.codecogs.com/eqnedit.php?latex=m%3D%5Cmax(%5Clog_2(N)%2C%5Clceil%5Clog_2(n)%2F2%5Crceil)#0
https://www.codecogs.com/eqnedit.php?latex=M(A)%5Cin%5Cmathbb%7BF%7D%5E%7B2%5Em%5Ctimes%202%5Em%7D#0
https://www.codecogs.com/eqnedit.php?latex=M(A)%5Bi%2Cj%5D%3DA%5Bi%2Bj%5Ccdot%20N%5D#0
https://www.codecogs.com/eqnedit.php?latex=A#0
https://www.codecogs.com/eqnedit.php?latex=0#0

For example, setting , and , we have

With this notation, we can define the commitment to to be
where is the commitment scheme

described in the Dory paper[6]. We set as the default because it is small enough to add
negligible time to the Prover but large enough to support large tables with minimal overhead.

4 Use Cases for the Next-Generation of Web3

4.1 Building a Flexible ZK-Rollup/L2

Space and Time’s novel zero knowledge protocol, Proof of SQL, can be used to build trustless,
bridgeless, gas-minimized microtransactions maintained on a flexible number of ledgers and
configurations.

Excessive gas costs (onchain transaction fees) are a major limitation to Ethereum adoption. Even
after the Merge, it remains prohibitively expensive to settle a complex transaction or large
volume of transactions on Ethereum. ZK-rollups, in response, offer a trustless and secure
“side-ledger” of affordable quick-settlement transactions to be batched and later committed to
the Ethereum mainnet. ZK technology effectively allows users to perform multiple transactions
offchain, or on a Layer 2 (L2) chain, and then post a single proof to Ethereum.

Proof of SQL enables an append-only database to function as a trustless offchain ledger for SQL
operations that can be batched, proven with zero knowledge cryptography, and settled on
Ethereum. Essentially, developers can easily build their own ZK-rollup on top of Space and
Time. This allows for unparalleled performance/scale, ease of development with familiar SQL
tools, and flexibility regarding the number of ledgers that can be maintained and rolled-up to the
main chain (usually an L1, but can also roll up to an L2 or appchain). This solution is distinct
from other ZK-rollup solutions in three key ways:

1. Instant Finality: Blockchains, especially those using probabilistic consensus
mechanisms like Proof of Work, operate with progressive finality: each transaction
becomes increasingly irreversible as more blocks are added after it. Because of the
inherent structure of an append-only database, transaction finality is instant upon being
added to the ledger.

31

https://www.codecogs.com/eqnedit.php?latex=N%3D2%5E2#0
https://www.codecogs.com/eqnedit.php?latex=A%3D(100%2C101%2C102%2C103%2C104)#0
https://www.codecogs.com/eqnedit.php?latex=M(A)%3D%5Cbegin%7Bpmatrix%7D100%26102%26104%260%5C%5C101%26103%260%260%5C%5C0%260%260%260%5C%5C0%260%260%260%5Cend%7Bpmatrix%7D#0
https://www.codecogs.com/eqnedit.php?latex=A#0
https://www.codecogs.com/eqnedit.php?latex=Commit(A)%3DDoryCommit(M(A))#0
https://www.codecogs.com/eqnedit.php?latex=DoryCommit#0
https://www.codecogs.com/eqnedit.php?latex=N%3A%3D2%5E%7B15%7D#0

2. Data Processing and Scalability: While current ZK-rollups focus on transaction
aggregation, Proof of SQL supports data processing operations (selections, projections,
joins, and aggregations), which expands the complexity of what can be settled onchain.
Additionally, Proof of SQL can scale to support infinite tables, rather than just a single
ledger.

3. Bridgeless and Gas-minimized: Unlike other L2 solutions, which require bridges to
move assets between mainnet and L2, Proof of SQL facilitates inter-chain/cross-chain
communications seamlessly. Furthermore, since offchain SQL operations are executed
without incurring onchain gas fees, smart contracts can access scalable compute without
incurring more cost. End-users do not need to first bridge their tokens from a main chain
to wrapped tokens on another chain before using dapps. Users pay gas only during
deposit and withdrawal; they execute a gas-incurring transaction to lock up
cryptocurrency in a ‘escrow’ contract (enabled with Proof of SQL) on the main chain and
are then free to execute cheap transactions in dapps built on Space and Time, later
performing another gas-incurring transaction when withdrawing their new balance back
from the escrow contract (which first double-checks the user’s balance by trustlessly
querying the ‘account balances’ table/ledger within Space and Time).

4. Familiar Tools: Space and Time is accessed with a widely used and easy to understand
tool: SQL. The ubiquity of SQL ensures a simple developer experience and seamless
integration with existing systems.

Note that this solution requires additional business logic which we’ve deployed on Space and
Time’s Transaction nodes to verify transactions—such as verifying that the user wallet has
signed a message to transfer value from their wallet, or to lock up capital in escrow—in a
decentralized way, in order to prevent double-spend and ensure Sybil-resistant transactional
compliance.D

4.2 Secure Bridges and Multichain Data Backends

Today, blockchain ecosystems are deeply fragmented. New, forward-thinking blockchain
architectures are being delivered to the market almost monthly, but are disconnected and
non-interoperable with other popular chains. Though most popular dapps are deployed across
multiple chains, communicating the state of any one deployment to another is complex and
expensive to do, since each blockchain operates in relative isolation. To implement a cross-chain
protocol, developers have to piece together solutions for retrieving, integrating, and messaging
data across disparate chains, manage multiple data structures, and deal with different consensus
mechanisms. Managing cross-chain dapps is hard enough, but the infra costs and engineering
overhead required to do so is growing—limiting dapp developers.

32

Space and Time provides a single, cryptographically-guaranteed source of truth for the real-time
state of many popular blockchains. Data from each chain is verifiably ingested (via our
ZK-compatible blockchain indexing) immediately after block finality and stored in a relational
state in the data warehouse. The Uniswap contract on Ethereum, for example, can query the state
of Uniswap on BNB Chain and get back a real-time result guaranteed by Proof of SQL. The
solution provides a streamlined, bridgeless way for developers to access, manage, and integrate
data from multiple chains into their dapp. Space and Time can serve as the decentralized data
backend for dapps, removing the need for both centralized databases and centralized API servers.
The Space and Time API gateway allows developers to build data-driven dapps directly on the
platform, with Space and Time itself as the backend servers—no centralized infrastructure
required. This is evidenced by the Space and Time Studio, as an example—our own analytics
dapp which consists only of frontend code and a smart contract (the Space and Time platform is
the entire backend).

Furthermore, Space and Time can radically transform the reliability of cross-chain bridges.
When bridging contracts need to facilitate a transaction between two chains, the fundamental
challenge is to ensure the authenticity of the locked-up assets on the source chain before minting
or releasing equivalent “wrapped” assets on the target chain. By querying ZK-proven indexed
data (essentially, an “account balances” table/ledger in the data warehouse), these bridge smart
contracts can "double-check" the balances of user accounts that have locked up capital in escrow
on chain 'A'. Only once this verification process confirms the authenticity of the locked assets in
zero-knowledge, the bridge can proceed to release the corresponding wrapped tokens on chain
'B'. This mechanism ensures a higher level of security in cross-chain operations, minimizing the
risk of double-spending or fraudulent asset creation. Moreover, the inherent privacy features of
zero-knowledge proofs ensure that while the veracity of the transaction is confirmed, sensitive
details remain concealed.

4.3 Dapp Backend (Decentralized)

Traditional applications stacks have a frontend or client-side, which is responsible for delivering
the user interface, and a backend or server-side, which handles which stores and retrieves
information with a database and executes business logic or actions on the retrieved data. Dapps
are designed to operate on a parallel stack: a frontend that delivers the user interface, and a smart
contract that executes logic on the blockchain (which essentially serves as a lightweight
database). However, because smart contracts are limited in computational capability to execute
complex business logic—and worse, blockchains generally have extremely limited storage—
dapp developers generally deploy centralized backends with centralized databases alongside their
smart contract. These centralized components introduce attack vectors for tampering as well as
single points of failure to the stack, undermining the core value proposition of a ‘decentralized’
application.

33

Space and Time is both a decentralized database and a decentralized, serverless backend for
applications that enables developers to build sophisticated, data-driven dapps without sacrificing
decentralization. Transaction nodes in the Space and Time network provide APIs for common
SQL operations, common requests for onchain datasets, and decentralized authentication with
role-based authorization. Developers can read/write application-generated data directly with
Space and Time, backend business logic can be delivered via python running on the Space and
Time nodes, and a dapp’s associated smart contracts emit events onchain that Space and Time
automatically indexes and makes available to the dapp frontend.

4.4 Data-Driven Lending

Lending is one of the most intuitive use cases for DeFi, but lending protocols are still
rudimentary compared to traditional lending systems. Borrowing from Aave, for example, is
very straightforward: a borrower takes out a loan from a liquidity pool, putting their own assets
up as collateral, and is charged an interest rate based on data about the asset and the liquidity
pool. A new Web3 user receives the same lending rate as a seasoned ‘degen’ with deep onchain
transaction history and multiple loans already paid off. Though borrowing history is
transparently accessible onchain, a smart contract has no way to aggregate or query it—even that
of its own chain.

Space and Time allows a smart contract to query ZK-proven aggregations of both onchain and
offchain loan history associated with a borrower in real time. These aggregations essentially
function as a credit score, allowing credible borrowers to receive better rates on onchain loans
and enabling higher risk-adjusted returns for lending protocols. Furthermore, a lending contract
could query Space and Time to determine dynamic loan liquidation preferences based on past
repayment behaviors onchain.

4.5 Cross-Chain Financial Instruments

Financial instruments, such as derivatives, are inherently multi-faceted and depend on a wide
range of data sources for accurate valuation. As Web3 expands and new L1 ecosystems emerge,
the ability of a derivatives smart contract, for example, to access and quote token prices from
multiple chains becomes more necessary. But today, for an Ethereum protocol to access token
data on Avalanche, for example, it has to bridge data, verify its authenticity, and deal with
inherent latency issues.

Proof of SQL streamlines this process, allowing real-time token prices on one chain to be
cryptographically verified and made available to protocols on another. Developers can craft
complex derivatives without grappling with the cost and efficiency challenges of cross-chain
data communication. A smart contract can directly query Space and Time’s comprehensive

34

indexed blockchain data with ZK-proof of its accuracy, all within just a few seconds of block
finality. This not only reduces the complexity of the derivative's creation but also ensures that the
derivative's value remains transparent, trustless, and up-to-date in real time.

4.6 Gaming Rewards

Rewarding players based on their achievements, skills, and in-game actions has become a staple
of gaming, but the integration of these rewards into onchain systems has been constrained by the
limitations of smart contracts. Smart contracts can only facilitate very simple reward logic, such
as “if player X wins this round, mint them an NFT,” and don’t have the native ability to integrate
data around what’s happening in the game.

Space and Time offers a solution by enabling offchain game telemetry to be incorporated in
onchain reward systems. Game developers can store detailed player metrics in the decentralized
data warehouse, from simple achievements to complex behavioral patterns. When it's time to
reward a player, a smart contract can query the data, aggregate it through more intricate logic,
and subsequently distribute rewards.

For instance, in a multiplayer online battle arena game, instead of simply rewarding a player for
winning a match, the contract can access analyses of team cooperation, strategy implementation,
and individual skill contributions. This level of depth, combined with the verifiability of Proof of
SQL, ensures that players are rewarded not just for surface-level achievements, but for the
richness of their gameplay experience. Accolades tracked in-game could include playtime,
weapons used, player rank/leaderboards, objectives completed, NFTs used, etc. By making
rewards more nuanced and data-driven, Space and Time amplifies player engagement and
expands the in-game economy.

4.7 Web3 Social Apps

Developers building Web3-native applications in the social networking space currently face four
challenges, listed below. Space and Time offers a decentralized data warehouse that essentially
solves all four:

1) Scaling to Billions of User Interactions: Blockchains not only have inherent throughput
limitations but also have limited onchain storage. Social apps often generate terabyte or
even petabyte-scale annual data volumes. Centralized offchain data processing solutions,
however, do not offer the trustless guarantees or proof of storage/data replication that
Web3-native apps require.

2) Securely Rewarding Content Creators Onchain: Along with scaling the storage
volumes and high-throughput required for billions of interactions, social apps often must

35

reward content creators for the attention/viewership attributed to their posted content.
Tracking engagement and periodically rolling up the required payouts to all content
creators onchain is almost impossible without leveraging centralized, tamperable data
processing solutions offchain.

3) Bootstrapping a Significant Amount of User-Created Content: Web3 social apps are
seeking composable, user-owned, decentralized social graph solutions such as Lens to
bootstrap posts and content. The chicken-and-egg problem of social apps (app isn’t
engaging without a large amount of user content to discover, and engaging user content
won’t be created without a large amount of users) can be overcome when a post
submitted by a user can show up in the content feeds of many different apps. However,
onchain solutions are far too limited in storage capacity to process all the posts, and
IPFS-like data storage solutions often have poor performance (high latency for real-time
interactions).

4) Enabling secure, private interactions: Blockchain data is inherently public, so allowing
for private messaging/interactions is challenging when using IPFS-like data storage
solutions or the blockchain itself as a backend. Conversely, using centralized backends
for private messaging is problematic in Web3-native use cases that require trustless
verification of the authenticity of private messages without revealing the message itself.

Scaling social interactions with offchain storage can be a complex undertaking. Not all data in a
social app needs the same level of security and immutability as others. While essential data like
content creator rewards or user balances might need the integrity of onchain storage, other data
like comments, likes, or shares might not. By offloading such data to Space and Time, for
indexed access and fast retrievals to quickly fetch posts, comments, or user profiles against
commodity storage.

Similar to rewarding gamers for in-game achievements, rewarding content creators can be just as
challenging. Certain critical interactions can be processed offchain (such as number of viewers or
minutes of attention on a piece of creator content) but delivered to a smart contract for
accurate/untampered and transparent/auditable reward payouts onchain. Other actions like
staking or content upvoting that involve token transfers, or any behavior that might affect a user's
financial position should be kept onchain to maintain trust.

Leveraging composable datasets in decentralized databases offers a transformative approach to
Web3 social interactions. By allowing multiple social applications to interface with a shared,
composable “content posts” table/dataset, a unified social graph emerges, transcending
individual app boundaries. This interconnected data structure enables third-party Web3 apps to
both read from and, given proper permissions, write to this community-operated table. The result

36

is seamless content flow across platforms, enhancing the overall user experience and removing
the need for each app to bootstrap its own content.

Finally, the zero-knowledge compute capabilities within Space and Time establish a robust
privacy layer for Web3 social applications. When employed for private messaging or content
sharing, ZK-proofs allow users to verify the authenticity of a message without revealing its
actual content. Thus, within the social app framework, a sender can prove they’ve sent a
legitimate message, and the recipient can validate this, all without exposing the message’s
contents to external parties or even the underlying infrastructure. This ensures that private
conversations remain confidential, fostering trust and security in decentralized social platforms,
while maintaining the integrity and transparency inherent to blockchain-based systems.

4.8 Settlement Systems and Third-Party Auditing

Over the last decade, banks and other financial enterprises have adopted consortium ledgers as a
trusted way to share data with other institutions. A consortium ledger functions essentially like a
blockchain that is privatized and controlled by a consortium of enterprises instead of a
decentralized network.

However, much like a blockchain, this ledger isn’t built to function as a transactional database.
Instead, a bank deploys a SQL database to manage its order books, then marks its P&L to market
once a day to be shared with the other banks in the consortium. Each consortium member can
trust that once this bank marks to market, the data on the ledger can’t be manipulated. Still,
there’s no way to guarantee that the granular transactions used to calculate P&L are real and
verifiable.

The only way to fully secure trust in offchain data is to connect it to a verifiable database. Each
bank needs to be able to verify that no other bank manipulated its P&L (or the data used to
calculate P&L) before adding it to a consortium ledger. If Space and Time is deployed as the
SQL database used to store and aggregate transactions, then no bank has to trust that each other
member is calculating its P&L correctly. It’s cryptographically guaranteed by Proof of SQL.

Similarly, Space and Time can be leveraged as a tamperproof audit trail of SQL operations,
which makes it easier for a business to prove compliance with regulatory requirements such as
the General Data Protection Regulation (GDPR)[4], for example. Every access, change, or
deletion of personal information protected under the regulation can be recorded in Space and
Time so that, in the event of an audit, the immutable record serves as unequivocal evidence of
the business’s compliance. Furthermore, as a decentralized data warehouse, Space and Time
provides the distributed framework to allow this company to deploy a network of data
warehouses entirely on EU-based infrastructure. Existing disparate data stores are easily

37

connected to Space and Time, where the company can run analytics against the data without it
ever leaving the EU.

Financial institutions that leverage Space and Time as their transactional database system are
able to execute a tamperproof, low-latency order book. Third-party financial institutions (often
part of a consortium) can read and write to the order book and cryptographically verify that it
hasn’t been manipulated/tampered by any of the participating entities. Order books can be settled
periodically on a public or private chain via Proof of SQL, although this is not necessary since
Space and Time itself offers the same cryptographic assurances of popular chains as a system of
record.

4.9 Custodial Digital Assets

One of the most widely recognized barriers to the adoption of Web3 is a convoluted and
unfamiliar user experience. Web3 games, for example, are viewed as their own distinct
subcategory of gaming, primarily because of the complexity around setting up a wallet and
minting NFTs.

Space and Time allows a game, a centralized exchange, or any other platform to hold custody of
and manage end users’ assets in a trustless way. The record of which user owns which NFT is
stored securely and transparently in the tamperproof Space and Time decentralized data
warehouse. If the user decides they’re ready to take custody, a smart contract can query the
database to mint the right assets to the right wallet, along with a proof that the record wasn’t
manipulated.

Furthermore, a centralized/custodial exchange can use Space and Time to prove that it actually
owns the assets it claims to on behalf of the user. Beyond proving reserves, Space and Time can
be leveraged to create a fully automated and trustless exchange process in which a smart contract
queries anonymous deposit data about a client to automatically execute a purchase on their
behalf.

Space and Time brings the transparency, security, and trustlessness of DeFi to CeFi, blurring the
line between the two. Given the growing public distrust in centralized exchanges, the ability to
prove reserves, hold tamperproof custody of user assets, and automate a process that prevents
bad internal actors from mishandling custodial funds is paramount to the survival of CeFi
platforms.

4.10 Tokenization of Real-World Assets and Dynamic NFTs

The tokenization of real-world assets, such as real estate, event tickets, or collectibles, have
emerged as one of the most promising and utilitarian use cases for blockchain technology. In

38

many cases, the metadata associated with these assets is dynamic in nature. For example, a
tokenized concert ticket has static metadata associated with the venue, artist, and seat number,
but also data that changes and fluctuates, such as the price of the ticket as availability decreases.

Space and Time not only provides trustless and decentralized offchain storage for metadata that
is too high-volume to be stored onchain, it also allows a smart contract to query the data in real
time to update the asset onchain accordingly, in a way that’s provable to the end user. In the
previous example, the ticket issuer stores the ticket’s metadata in Space and Time, along with the
parameters by which the price might increase or decrease. When a concert goer purchases the
ticket, the smart contract queries Space and Time to get the real-time price information and
executes accordingly.

This model both allows data to be stored more efficiently, with only the most important
information around the asset aggregated and published onchain, and provides more transparency
to the end user around how the asset is dynamically priced. In the ticketing industry specifically,
users are demanding price transparency more than ever, and Space and Time lays the framework
for blockchain technology to provide it.

4.11 Transaction Security and Wallet Whitelists

Ensuring the security and safety of onchain transactions prior to execution is critical to the
growth and prosperity of the Web3 ecosystem. There is a significant market for
transactional/smart contract security protocols for which Space and Time can serve as the
verifiable data/data processing backend.

Consider a security platform that leverages offchain machine learning to analyze a wallet’s
activity and determine whether it’s safe to transact with. Not only does Space and Time allow the
platform to access verifiable onchain wallet history, it can also store the platform’s outputs (in
this case, wallet addresses and associated risk scores) in a tamperproof (and, if necessary,
transparent) table. To validate that a transaction is safe, the platform queries Space and Time to
get the verifiable, real-time risk score for the receiving wallet.

Similarly, Space and Time can store compliance data (for example, a list of OFAC-banned
wallets, or a whitelist of KYCed wallets) in a transparent and tamperproof way. A smart contract
can verifiably query the table to consult the list and ensure compliance before executing a
transaction. Any client can create a table of whitelisted/blacklisted wallets in Space and Time
and populate it with offchain data or data collected by their smart contracts, and query that table
directly from a smart contract with ZK-proof that the data wasn’t tampered.

39

4.12 Liquidity Pool Rebalancing based on Market Conditions

Liquidity providers for protocols such as Uniswap v4 are eager for opportunities to passively
earn greater rewards from the pools they provide capital to, yet often face impermanent loss or
adversarial token balances within the pool due to volatile market conditions. This results in
liquidity providers receiving fewer tokens than they would have if they had simply held onto the
tokens rather than providing capital to a pool. Thus, dynamic pool rebalancing executed by
external actors helps:

● Maintain Asset Ratios: Many AMM-based DeFi pools are designed to maintain a
specific ratio of assets (e.g. 50:50). During market volatility, when one token's value
changes significantly relative to another, the pool deviates from this intended ratio.
Rebalancing ensures that the pool stays close to its target ratios.

● Reduce Impermanent Loss and Increase Yields: As mentioned earlier, impermanent
loss is a risk faced by liquidity providers in AMMs. By periodically rebalancing pools,
developers can help mitigate the effects of impermanent loss and make providing
liquidity more attractive to users. Rebalancing can help ensure that the capital is always
placed in the highest-yielding pool configuration, maximizing returns for participants.

● Enhance Security: Pools that grow too large or imbalanced might become lucrative
targets for arbitrageurs or potential exploiters, especially if there are discrepancies in
pricing. Regular rebalancing can deter such exploitative behavior.

However, modification of positions in a pool (dynamic rebalancing) must be executed in a
trustless, cryptographically-guaranteed manner in order to ensure that bad actors cannot
manipulate LP positions in their favor. Using Space and Time to track the pool’s historical state
and run queries that observe current conditions ensures trustless LP rebalancing only when
user-defined market conditions are met. Space and Time can provide arbitrary checks for market
conditions around averaged spot prices and real-time volatility, which are then returned (along
with an associated ZK proof) to a smart contract managing the LP positions in order to execute
required checks/logic onchain prior to any LP modifications. Doing so would allow liquidity
providers to increase their returns without managing their infrastructure or relying on trusted
external managers.

5 Decentralized Network Value Accrual

5.1 Node Operations

Network participants (node operators) can contribute any of the following three node types
within Space and Time:

40

1) Validator Nodes:

a) Execution: Lightweight service that indexes blockchain data and creates
commitments on the data which the Proof of SQL protocol uses to verify that data
hasn’t been manipulated. These nodes ping blockchain RPC services to get the
latest block/transactions/events, then decode and transform the data to prepare it
for ingestion through the Transaction nodes. Though a few Validator nodes
actually send raw blockchain data downstream to the Transaction nodes, most
Validators simply complete their data pipeline by updating cryptographic digest
(commitments) on the blockchain data they’ve processed and send only these
updated commitments to the Transaction nodes for consensus-driven proof of the
veracity of indexed data. Post-onboarding, these nodes must sync with the
network to retrieve the latest commitments on blockchain data in order to
continue indexing. Increasing the number of Validators in the network increases
overall protocol security, as it implies that more nodes are redundantly indexing
the same blockchain data and sending commitments on the data to Transaction
nodes for consensus-vote.

b) Onboarding and Reward Mechanism: Permissionless nodes that, due to their
minimal hardware requirements, can be onboarded with minimal staking
requirements. Theoretically, we could configure the network to allow self-service
onboarding of Validators with as little as $100 staked, and thousands of Validators
can be onboarded in a permissionless manner with minimal rewards distributed to
Validators while still ensuring their profitable operation (for example, less than
$1000 in rewards annually). Slashing is maintained via consensus around
Validator’s commitments on indexed blockchain data sent to the Transaction
nodes which actually execute consensus.

c) Hardware Requirements: This Rust-based Validator service is lightweight
enough to run on a well-equipped laptop such as an Apple Macbook or small
AWS EC2 instance.

2) Transaction Nodes:

a) Execution: A single Rust-based binary that verifies transactions, achieves BFT
consensus and threshold-signs commitments on indexed data from the Validator
nodes, buffers ingested data to Apache Arrow record batches in memory before
compressing to Parquet files on shared storage (a public good offered by Space
and Time—more on this below), and includes an Apache Datafusion library for
serving analytic queries which don’t require Proof of SQL (non-tamperproof
queries). Increasing the number of Transaction nodes in the network increases

41

overall protocol security, as it implies that more nodes are participating in BFT
consensus, thus further preventing collusion.

b) Onboarding and Reward Mechanism: The Transaction nodes’ Proof of Stake
consensus mechanism can be configured for either permissionless or
permissioned node onboarding, when optimizing for performance vs. protocol
security, for example. The latter, however, would invite significant engineering
effort, as it would require either dynamic Shamir’s Secret Sharing (nodes
constantly joining and leaving the network without changing the public key,
which external verifiers must use to verify proofs against threshold-signed,
consensus-voted indexed data from the Validator node set) or alternatively would
require a constantly-changing public key for threshold-signed commitments on
indexed data which external verifiers must constantly be made aware of.
Transaction nodes require a heavy stake, as there is a significant incentive for
external attackers or collusion among the nodes. Slashing is performed when
Transaction nodes miss SLAs or misvote too often during consensus.

c) Hardware Requirements: Requires a single dedicated server with at least 64GB
of memory to operate, although larger amounts of memory should significantly
improve OLAP query performance. Does not require a GPU.

3) Prover Nodes (Proof of SQL):

a) Execution: Fulfill ZK-proven query requests that can join and exit the network at
will (no onboarding required)—these nodes run the Proof of SQL ZK circuit on
their local GPU(s). Provers execute a service that listens for query requests/jobs
via the events emitted by Space and Time Verifier contracts on popular chains,
and fulfill the requests by executing a query and associated ZK-proof, submitting
results to the Verifier contract along with a payment for onchain verification (a
bounty submitted as a transaction). Provers read blockchain data from shared
storage when executing queries. Keep in mind that BFT consensus is primarily
for verifying the veracity of indexed blockchain data provided by Validator nodes.
Due to the zero-knowledge-based approach with Provers, participation in
consensus is not required. Increasing the number of Provers in the network does
not increase overall protocol security, as each query request/job only requires a
single Provers to fulfill.

b) Onboarding and Reward Mechanism: Provers are permissionless nodes with
no stake required and no registration with the network required. Once successful
verification has occurred onchain, the Verifier contract refunds the Prover node’s
account with their bounty (a payment the Prover node previously submitted to the

42

Verifier contract as a transaction to coerce the Verifier to attempt to verify the
proof/query result for a certain request/job) along with an additional reward for
fulfilling the request. In this manner, Prover nodes simply compete with each
other to fulfill a request/job.

c) Hardware Requirements: Provers require at least a single NVIDIA GPU for
proof generation, but can scale to handle more complex queries or proofs over
larger datasets when operating a cluster of GPUs. They outsource persistent
storage to the network’s shared storage service.

While not directly part of network operations (not a specific node type that network participants
must operate or stake on), “shared storage” is a public good maintained by Space and Time to
provide Prover nodes with a data lake of comprehensive, always-up-to-date indexed blockchain
data to read from when executing queries and building associated proofs. This data is signed by
and ingested from the Validator nodes, which perform blockchain indexing. This storage service
can be either centralized (i.e. Azure Blob storage) or decentralized (an IPFS-based approach) as
long as sufficient liveness guarantees and sufficient replication of each dataset is ensured. We
opted for a natively-developed storage approach loosely based on IPFS with Delta Lake as the
underlying framework for organizing massive Parquet datasets, which audits each dataset for a
sufficient number of replicas across cloud availability zones via a Proof of Storage mechanism
native to Space and Time, ensured by BFT consensus.

We utilize behavioral algorithms to monitor network activity and detect anomalies in node
responses, such as latency spikes, data inconsistencies, or ZK-proof errors. Slashing conditions
are tiered based on the severity of the violation, ranging from temporary staking penalties to
slashing an entire bounty for continued infractions. Honest Validator nodes’ onchain accounts
are rewarded periodically, while Transaction nodes can be rewarded in real-time as part of BFT
consensus (Proof of Stake).

43

Figure 7: Space and Time Node Operations

5.2 Token Utility

Customers pay for compute, while storage is free (shared storage service is a public good within
the Space and Time network). A general rule of thumb in the data warehousing vertical assumes
the volume of data that an organization stores is directly proportional to the number of queries
they execute (the amount of compute they consume). Clients are charged per query with dynamic
pricing, adjusting in real time based on network congestion and query complexity, and urgency.
This ensures competitive rates and optimal value capture.

A majority portion of fees are allocated to reward node operators—paid via a combination of the
native token to further contribute to their stake size as well as $ETH or $USDC to provide node
operators liquidity. A segment of the network's revenue forms a reward pool, distributed to nodes
and GPU-deployed Provers based on their contribution and performance. Small portions of
native tokens received as fees for services are burned periodically, adding deflationary pressure.

44

As more dapp developers issue both onchain (verified by a smart contract) and unverified
offchain query requests, demand for our service grows, creating a consistent stream of
revenue/utility contributing to token velocity and economic viability of the network.

The cost-per-query for each request is dynamically determined primarily based on query
complexity. Query complexity is measured in CPU seconds by the network, offering a stable
mechanism that scales linearly, even across varying hardware specs. We utilize smart contract
functions to automatically detect and bill query requests, with payment channels supporting our
native token as well as popular currencies (denominated in $ETH, $USDC, $USDT, and $LINK,
for example). Beyond the basic fee for executing a query and building the associated ZK-proof,
included in the client smart contract’s payment is gas payment required for onchain verification
of the query’s associated zero-knowledge proof. Smart contracts interact with our protocol's
Verifier contract to make a request/create a job, sending a transaction with the query parameters
and the required fee. Once the data is fetched/proven offchain and verified onchain, the verified
result is relayed back to the requesting client contract from Space and Time’s Verifier contracts.

5.3 Governance

We plan to gradually implement community governance (i.e. a DAO structure) to remove the
need for the Space and Time team to manage the network, by allowing token holders to vote on
network features, upgrades, integrations, and fee models. In regards to fee models, token holders
influence the protocol's direction directly by periodically voting on “cost-per-query” unit
economics. Essentially, governance should ensure that the fees charged to clients for both
tamperproof queries (ZK-proven via Proof of SQL executed with GPUs) and non-tamperproof
queries (normal, unverified query execution via Apache Datafusion executed on standard
hardware) are sufficient for rewarding node operators profitably, while keeping fees in-line with
market expectations from end-users. Participants can submit network improvement proposals
and token holders can propose, debate, and vote on changes using smart contracts for
transparency. Voting weight may be influenced by staked amount, and specific node types they
operate, if any. Of course, holders can also stake tokens for compute services or delegate staking
to node operators in order to participate in a portion of their earned rewards.

5.4 Additional Business Models

Though Space and Time’s primary revenue will likely derive from onchain query fees, there are
several other streams that serve to generate revenue for our business (and utility to the network’s
native token):

Enterprise Analytics: We earn significantly through the fiat subscription-based sale of Space
and Time as an enterprise analytics platform. Web2 enterprises, who aren’t necessarily concerned

45

with ZK-proving their queries or connecting to smart contracts, use Space and Time as a
low-latency, cost-effective data warehouse to power analytics for their businesses. As an HTAP
solution, we remove expenditure toward a wealth of point-solutions (transactional databases, to
ETL tools, to analytic data warehouses, to BI tools) that plague enterprises. The total cost of
ownership to enterprises can vary from tens to upwards of hundreds of thousands of dollars
monthly to maintain each of these data tools. Value accumulated via enterprise analytics doesn’t
have to remain offchain—enterprises may procure query compute credits in bulk, converting fiat
revenue to “burned tokens” in bulk, generating demand and adding liquidity to the Space and
Time network.

Web3 Data APIs: Space and Time offers a comprehensive set of highly scalable APIs around
commonly requested blockchain datasets. By indexing blockchain data in a structured way, we
expose APIs that make querying, fetching and understanding this data straightforward for
developers. Access can be token-gated or require fiat-based payments on a cost-per-query basis.

Blockchain Data Dashboards: Space and Time is positioned to drive business by providing
blockchain data dashboards and visualization tools as a service. Popular Web3 dashboarding
platforms, such as Dune Analytics, are growing their market share within the toolkit of onchain
data analysts and blockchain enthusiasts. Space and Time plays in this market as well, and
uniquely wraps AI-powered visualization tools into a comprehensive, end-to-end data platform
with ZK verifiability. Revenue driven from analytics dashboards is generally facilitated via
monthly fiat-based subscriptions or cost-per-query pricing.

Data Marketplace: Verifiable indexed blockchain data (ZK-compatible, trustless) from popular
chains are ingested to Space and Time’s decentralized data warehouse in real time (entire chain
state—every block, transaction, event, account, liquidity pool swap, etc.). In addition, users can
load in their own offchain data (with trust-minimization via consensus) from TradFi markets,
gaming, cloud data storage, etc. Thus, third-party organizations can sell their data through Space
and Time while preserving their IP, and Space and Time itself essentially sells its own indexed
blockchain data by wrapping incentives for indexing node operators into the cost-per-query for
accessing that data in the Space and Time data warehouse.

AI-Powered (Next-Gen) BI tools: Space and Time has made significant strides with OpenAI’s
APIs to build a simple but robust AI-powered toolkit, which enables users to quickly generate
SQL based on natural-language prompts. Though this toolkit was designed with the schema/data
model of our indexed blockchain data in mind, customer schemas and datasets are automatically
processed as well for fine-tuned natural language queries against offchain data. Not only can
Space and Time stand in for traditional BI tools (such as Metabase or Tableau), it’s positioned to
replace them entirely with a friendly and comprehensive AI-powered user-experience that
eliminates the need for specialized skills (even as basic as writing SQL) to leverage analytics.

46

Recurring revenue from this aspect of the business is generally facilitated with monthly
fiat-based subscriptions.

RPC Services: Space and Time operates its own RPC nodes as a public good for our blockchain
indexing service. RPC nodes are difficult to maintain and expensive to run, and as blockchain
indexing is a core part of our business, we have additional interest in ensuring that our nodes are
both high-performance and extremely reliable. Thus, we may be able to provide RPC services
superior to existing solutions on the market.

5.5 Network Effects

Competitive Moats: Space and Time is uniquely positioned to capitalize on the moats of both a
data warehouse and a Web3 protocol to differentiate itself in the market and establish an
indomitable barrier for competitors. Data warehouses generate significant data gravity—once a
business has built its operations around one data warehouse, it’s complex and economically
unviable to migrate to another, increasingly so as more data accumulates within the system. In a
Web3 protocol, an increase in network participants not only directly translates to heightened
protocol security, as it becomes more difficult for any one actor to gain control, but also creates
greater economic stability—as additional nodes and increased staking ensures a more resilient
and decentralized control structure within the network.

Network Growth: As more developers query Space and Time, the increased activity generates
more fees, attracts more participants, and further solidifies our position in the ecosystem. More
chains being indexed and more dapps being built on the network results in a richer and more
diverse array of composable datasets, which enhances its utility. Moreover, by expanding
integrations across multiple chains, Space and Time is able to tap into more third-party
ecosystems and cast a wider net over the market. As more developers use our platform, the value
and utility of the network grow exponentially—resulting in more activity, more fees, more
participants, and more velocity in the market. A small portion of accumulated query fees offer
the potential to be reinvested into research and development, refining the protocol, expanding the
range of indexed data, improving query performance, and accelerating nascent cutting-edge
circuits for arbitrary computations beyond SQL.

Marrying Scale and Provability: A traditional data warehouse is highly scalable—conceivably
able to handle infinite tables—but is centralized and trust-required, and therefore not compatible
with Web3. A blockchain, on the other hand, requires no trust but is inherently limited to a single
ledger, constraining both the scale and variety of data that it can handle. Proof of SQL juxtaposes
the scale of a data warehouse with the trustlessness of blockchain. Thus, Space and Time
essentially functions as an infinite-ledger blockchain, satisfying both the need for the scale to
power enterprise applications, and the trustlessness required by Web3.

47

The Result: The circular nature of our network effects (more data gravity, security, and scale
draws in more developers/businesses, which in turn draw in more gravity, security, and scale)
leads to two main outcomes: 1) Proof of SQL becomes the database market standard—where all
companies demand both the scale and provability which only Proof of SQL can offer, and 2)
Proof of SQL becomes the ultimate cross-chain state proof—allowing developers to easily and
swiftly message the full state of any one chain to another with cryptographic verifiability.

6 Conclusion
As the digital age stands at the precipice of a decentralized future, new cryptographic primitives
are required to ensure offchain data processing does not break the trustless guarantees of the
blockchain itself. Decentralized applications and smart contracts are powerful, but they've been
hindered by far-too-limited data access and compute capability. Space and Time directly
addresses these issues, offering a seamless interface for accessing, computing over, and verifying
data across varied chains and offchain sources—a coprocessor for smart contracts. Our full stack
of developer tools includes a decentralized service to prepare already-verified indexed
blockchain data for querying (also called ‘coprocessing’), and a powerful HTAP query engine to
execute computations against these datasets with low latency.

Our future-proof design ensures scalability without compromising trust, using a zero-knowledge
framework to keep every interaction verifiable and free from centralized manipulation. While
optimizing for SQL within our zero-knowledge circuit, we cater to ubiquitous data operations
familiar to developers, without limiting them from exploring far beyond (i.e. flexibility for
accelerating community-developed circuits deployed on Space and Time to prove arbitrary
computations outside of SQL). Self-custody of end-user data is made possible by Space and
Time, and developers can use this protocol to build extremely flexible ZK-rollup solutions which
transparently empower end-users with granular controls. We’re excited to usher in the next era of
sophisticated, data-driven smart contracts and fulfill the vision of a more scalable, transparent,
community-operated, and secure Web3.

Delivered to the market as a decentralized network for data warehousing, Space and Time
ensures value (derived from fees to end-users or client smart contracts requesting query results)
continuously accrues to stakers and participants who provide nodes (hardware) to the network.
From direct revenue streams offchain that “burn tokens” onchain to utility around a marketplace
for indexed blockchain data, we've crafted an ecosystem where straightforward economic
incentives grow the number of participants (and network value as a whole) while driving down
the costs of data processing. We invite developers, users, enterprises, node operators,
investors/retail stakers, and industry leaders to join us on this exciting journey where data is both
the fuel and the path forward.

48

In summary:

1) Verifiable indexed blockchain data (ZK-compatible, trustless) from popular chains is
ingested to Space and Time’s decentralized data warehouse in real-time. The entire chain
state is indexed—every block, transaction, event, account balance, liquidity pool swap,
etc. In addition, users can load in their own offchain data (with trust-minimization via
consensus) from TradFi markets, gaming, cloud data storage, etc.

2) Once data has been ingested, trustless computations in zero-knowledge are operated on
the data at extreme scale—either via SQL queries or other community-provided proof
circuits for arbitrary computations. The results of these computations or queries are
returned to clients (such as a smart contract, web browser, or financial institution) for
verification along with a ZK-proof that the computations were executed correctly against
underlying data that was untampered.

3) Permissionless network participants can contribute by operating nodes (hardware such as
a single GPU or cluster of servers) and staking on those nodes along with retail stakers.
Incentives to the participants are delivered via query fees charged to clients such as smart
contracts or enterprises that need to secure their data offchain.

4) A new generation of sophisticated dapps, flexible ZK-rollups, and cryptographically
proven financial systems can be built with Space and Time as the backbone. In addition,
for clients who do not require ZK-proven query results, but simply want a
next-generation data warehouse delivered at a lower cost, Space and Time introduces
hybrid transaction and analytic processing superior to point-solutions (today’s popular
cloud data warehouses).

Appendix

A Data that Smart Contracts Can Access (without Space and Time)

Smart contracts on the Ethereum Virtual Machine (EVM) can natively access a range of data
pertaining to the blockchain and their own state. However, they can't natively access information
outside of the Ethereum network without the use of oracles. Here's what a smart contract can
natively access:

● Blockchain Metadata: Block Information such as block number (block.number), block
timestamp (block.timestamp), the block's gas limit (block.gaslimit), etc.

● Gas Information: Smart contracts can access limited gas information such as the gas
limit of the current block, the gas price (in wei) of the transaction that is currently being
executed, and the amount of gas remaining for the current function execution (using
gasleft()).

49

● Transaction Information: The transaction's sender (msg.sender), the value of ether sent
with the transaction (msg.value), and the transaction's data payload (msg.data).

● Account Data

○ Balance: A contract can query the balance of any wallet or smart contract address
(including its own) with address.balance.

○ Contract Code: A contract can get the bytecode of another contract using the
extcodesize and extcodecopy opcodes.

● Storage and Memory:

○ Contract Storage: Each contract has its own persistent storage, and it can read
from and write to this storage. This is essentially the contract's "state".

○ Memory: This is a temporary place where data can be stored and manipulated
before being placed in storage or returned as output. It's ephemeral and will be
erased between function calls.

● No access to Logs and Events: While contracts can emit logs/events, they can't read
them directly. Logs are primarily for external consumers, such as dApps or backend
services, which can then listen for and process these logs.

● Interactions with Other Contracts: A contract can call functions on other contracts,
sending ether and data. The result of such a call can be captured and processed. This
means that a contract can, for example, query the state or balance of another contract, or
even trigger actions in that contract. Similarly, a contract can reference its own address
using address(this).

● Ether Operations: A contract can send ether to any address. A contract can determine its
own ether balance.

● Create New Contracts: A contract can deploy a new contract using the CREATE
opcode.

Note that while smart contracts can access all the above data, they cannot natively access:

● Smart Contract Events (logs) emitted on their own chain or other chains.

● Historical onchain data such as transaction history.

● Cryptocurrency prices (aggregated token price feeds or liquidity pool swap prices)

● Information about the real world (e.g., stock prices, weather data).

50

● Offchain data (e.g., content of a website, API responses).

● State from other blockchains.

For these types of datasets, smart contracts usually rely on oracles—trusted or trust-minimized
data providers that relay offchain information onto the blockchain.

B HTAP to Replace Point-Solutions

In the data warehousing industry, hybrid transactional/analytical processing (HTAP) represents a
paradigm shift that resolves a longstanding challenge in traditional markets. In the context of
Space and Time, understanding HTAP is crucial to grasp how the data warehouse maximizes
efficiency and versatility.

Traditionally, in many Web2 companies and conventional markets, data processing involves a
cumbersome process. Businesses often employ separate database solutions for transactional
processing (OLTP) and analytical processing (OLAP). These solutions served specific purposes
but also posed significant challenges:

● Data Redundancy and Complexity: Maintaining separate systems led to data
redundancy and complexity, as data needed to be transferred between OLTP and OLAP
databases. This not only consumed time and resources but also increased the risk of data
inconsistencies.

● Latency Issues: Analytical processing often suffered from latency issues, as it relied on
periodically refreshed data from transactional databases. Real-time insights were a
challenge to achieve.

● Scalability Challenges: Scaling these separate solutions in response to growing data
volumes and user demands was often an intricate and expensive process.

HTAP addresses these issues by combining OLTP and OLAP capabilities within a single system.
Here's how it works:

● OLTP and OLAP Integration: HTAP systems like Space and Time have both an online
transactional processing (OLTP) engine and an online analytical processing (OLAP)
engine working in tandem. This allows data to be simultaneously ingested, processed,
and analyzed within the same environment.

● In-Memory Caching: HTAP systems often employ in-memory caching to enable
low-latency transactional processing. This means that even complex analytical queries
can be executed without significant delays.

51

● Eliminating Data Redundancy: By consolidating data processing into one system,
HTAP eliminates the need for data redundancy and complex data transfers between
different databases.

● Real-Time Analytics: With HTAP, analytical processing can be performed on real-time,
up-to-date data, enabling organizations to gain insights without the delays associated with
data extraction and transformation.

HTAP, as utilized by Space and Time, represents a leap forward in data warehousing efficiency
and functionality. It harmonizes transactional and analytical processing, eliminates data
redundancies, and offers real-time analytics, all within a single, streamlined system. This
approach not only simplifies data management but also paves the way for more agile and
responsive data-driven decision-making.

C Proof of SQL “Bring Your Own Database”

Proof of SQL is a zero-knowledge proof attached to SQL databases, which cryptographically
proves to a client that both query execution and underlying tables are untampered. We can
leverage the Proof of SQL protocol to trustlessly verify query results returned from other
outsourced traditional database/data warehouse solutions besides only the Space and Time
decentralized data warehouse solution. For example, we could “attach” the cryptographic
protocol to PostgreSQL, Snowflake, Apache Spark, Google Bigquery, AWS Athena/Redshift,
Microsoft Fabric, etc. This would allow users already building on top of these query tools to
connect them directly to smart contracts without breaking the blockchain’s trustless model, or to
provide proof of query execution to a verifier on an external client device. In essence, developers
can “bring their own database” verified with Proof of SQL.

Here’s how it works: a Space and Time Prover node is connected adjacent to the database
engine. This is the primary integration point. The Prover is responsible for executing
tamperproof queries. To facilitate this, the Prover requires access to table data. This can be
achieved through access to the database’s local storage or external tables, or by sending requests
directly to the database itself. With Proof of SQL, the root of trust is established by creating
virtual ‘tamperproof tables’ inside the target attached database. As data gets added to these tables
by clients, special hashes (or 'commitments’) are updated. Later, when validating a query and
associated ZK-proof, these commitments are used to confirm its validity.

When a tamperproof SQL query reaches the database and is directed to the Prover, the result,
accompanied by its proof of correctness, is generated. This proof-result pair is then transmitted to
the Validator node, where verification takes place. Additionally, Space and Time offers both
commitment creation and verification functionalities through a client-side library. This shifts the

52

root of trust to the user. Some clients prefer this approach, while others choose to delegate
verification to the Validator, which carries out this role on their behalf.

To enable Space and Time’s Proof of SQL service to ZK-prove that queries against data were
executed accurately and that the underlying data hasn’t been tampered, we simply:

1. Provide Space and Time Prover node access to database storage (local or external).

2. Position the Space and Time Validator (which logs tiny digital fingerprints of the data
inserted, and uses these fingerprints to ZK-verify query results coming back from the
database) in front of the database as a proxy or load server.

3. Data loaded into the database should be loaded in through the Validator. Queries
executed against the database should be routed through the Validator if they need to be
ZK-verified (validate that the query results and underlying tables have not been
tampered).

D Leveraging an Append-Only Database as a Tamperproof Offchain
Ledger

An append-only database/data warehouse can be designed to emulate some of the essential
features of a blockchain (and we’ve done exactly that in our development of the Space and Time
data warehouse):

● Immutability: Tables are append-only; transactions cannot be modified or deleted once
written.

● Double-Spend Prevention: Before a transaction is added, a mechanism compares it
against the historical record to verify that the respective assets haven’t already been
spent.

● Serialized Transaction Ordering: By nature, transactions are recorded in the order they
are received and processed.

● Transaction Consistency: The database can be implemented with specific consistency
logic to ensure that only transactions that meet predefined validity criteria are appended.
Note: In the case of Space and Time’s Proof of SQL protocol, our transaction nodes
implement this logic to verify/authorize requests/transactions, cryptographically ensuring
that unapproved transactions cannot occur.

However, other key characteristics of the blockchain are not inherent to an append-only database:

● Zero-Trust: In a blockchain network, transactions are distributed; rules are enforced by
consensus rather than by a central authority. A single append-only database requires
inherent trust in the entity that maintains it. Though this problem persists when using

53

traditional database systems, Space and Time solves this as the only decentralized data
warehouse system, relying on a global committee of user-operated nodes which come to
consensus to prove validity of ingested data (and verify/authorize requests/transactions).

● Concurrency: Block intervals and consensus mechanisms ensure that a blockchain
ledger remains consistent amid multiple concurrent transactions. An append-only
database would require its own mechanism to queue concurrent transactions
appropriately and ensure consistency. Space and Time has implemented consensus in the
network to appropriately serialize transactions.

● Cryptographic Security: Cryptographic chaining, where each block references a hash of
the previous, enhances the integrity of a blockchain network. Though not strictly
necessary in the case of an append-only database, such measures would provide
additional security against tampering. Space and Time has implemented the Proof of SQL
protocol for cryptographic guarantees on the underlying datasets.

● Finality: Blockchains, especially those using probabilistic consensus mechanisms like
Proof of Work, operate with progressive finality: each transaction becomes increasingly
irreversible as more blocks are added after it. In an append-only database, finality is
immediate upon appending, but the assurance of this finality depends on the security and
trustworthiness of the system. Space and Time offers instant finality through the Proof of
SQL protocol.

In order for an append-only database to function as an offchain tamperproof ledger, these
features must be guaranteed by ancillary mechanisms or by leveraging Space and Time’s Proof
of SQL protocol directly.

E Space and Time in the Market

E.1 Web3’s evolution as a digital economy powering novel apps

While Web3 can trace its roots back to the first blockchain network in 2009, the technology has
rapidly matured over the last three years by expanding throughout the tech stack, improving
usability and accessibility, and accelerating throughput. Advancements in Web3 have led to the
broader acceptance and adoption of digital assets as an asset class, particularly by established
financial services companies.

Web3 is in the midst of transitioning into a new chapter that will see an even more rapid
maturation of the technology, a user base that grows from the millions to the billions, and
ultimately, the mass adoption of blockchain technology across all industries. The world’s largest
enterprises and financial institutions have made significant investments to leverage blockchain,
and it’s only going to continue to accelerate.

54

As blockchain technology is widely adopted by enterprises, distinctions between Web2
technology and Web3 technology will become less significant and less useful. Enterprises will
leverage both centralized and decentralized ledgers for a variety of applications and business
models (where “trustless” vs. “trust-required” considerations are at play), many of which have
not yet been imagined. Blockchain will transition from an emerging technology to a fundamental
layer in the enterprise tech stack, Web3 and Web2 will become wholly interoperable, and the
application of AI at scale will drive further innovation.

Some recent stats to underline the market today:

● Over $20B of value settled daily on the major blockchains
● Over 750M smart contracts across the major chains
● Over 50M daily transactions across the major chains
● Over 100K decentralized applications across major chains
● 35K Web3 developers building on the major chains

An investment today in SxT has two main sources of value that are unique to see in the same
company, in the same platform: 1) delivering familiar data warehousing tools as a Web3-native
experience, and 2) verifiable (trustless) compute, where all activity in the data warehouse is
cryptographically proven.

E.2 Proven value in data warehousing

The need for a platform to support data storage/data warehousing and scalable analytics both
cross-chain and off chain.

While there are many use cases today in Web3 that run on a single blockchain, the more valuable
use cases will integrate data from multiple blockchains and offchain centralized data sources. As
financial services firms take on custodial roles for digital assets, for example, analytic and
reporting needs will increase. Those analytics will have to incorporate blockchains, centralized
ledgers that track offchain assets, and databases that store customer data.

This nascent market, void of any popular solutions today, is likely to evolve similar to how cloud
data warehousing and analytics evolved. Snowflake, a popular cloud data warehouse, was the
largest software IPO ever as of 2020. Data management software today is a global $75B market
with high single-digit to low double-digit growth. AI platforms specifically are growing at
30+%.

While traditional Web2 data warehouse technologies are point-solutions which focus on either
transactional queries (OLTP) or scalable analytics (OLAP), Space and Time combines the two
efficiently in a unified platform. Space and Time has accrued $3M ARR since April, with an

55

impressive list of established Web2 enterprises in financial services and accounting, as well as
Web3 gaming companies that need to track tokens across multiple chains and DeFi companies
that need to incorporate offchain analytics. This growth in logos and revenue makes SxT one of
the fastest growing data analytics companies ever.

While total market size today for this fast moving category is difficult to calibrate, every Global
5000 company and all Web3 companies (~23K+) will need a database / analytics platform with
Space and Time’s functionality. Estimating based on SxT’s beta pricing, this market would be
conservatively sized at ~$700M–$1B today, and quickly moving to a multi-billion market over
the next few years.

E.3 New compute paradigm removes trust-requirements

Establishing verifiable compute as the fabric of Web3.

Space and Time’s breakthrough in cryptographically provable data processing solves many of the
developer, user, and scalability issues present in smart contracts and blockchain today. In fact, it
even offers a solution to traditional financial institutions requiring that their own offchain
transactions and market data remain tamperproof. Thus, ‘verifiable compute’ will effectively
create a new market category and establish a standard among enterprises.

Space and Time is a verifiable compute solution that integrates chain connectivity and
zero-knowledge provability along with familiar database storage/compute… and the stack is
growing at record speed. This solution seamlessly bridges onchain and offchain systems,
effectively introducing verifiability to the enterprise data management stack while
simultaneously scaling the capabilities of blockchains.

To date, this platform is already being embedded in the fabric of Web3.

Market coverage is as follows:

● 25% of all Web3 developers utilizing the platform with a subset contributing to the SxT
open source project

● 25% of capital volume of L1 blockchains – seamlessly integrated and indexed
● 90% of capital volume of L2s and protocols – seamlessly integrated and indexed
● 70% of cloud data networks – accessible through SxT

As part of developing the ZK-compute layer, SxT has driven a major innovation by taking Proof
of SQL to market. Simply put, in a world that operates at the intersection of Web2 and Web3,
there is broad value proving that a query was executed properly, or that the data used to execute
business logic within a smart contract was filtered/aggregated properly. Proving the accuracy and
lineage of data is already a key topic in the training of LLMs for AI, and there are already

56

numerous companies working on AI within blockchains. Lastly, companies of all sizes have
latched on to Proof of SQL, particularly in the area of compliance and auditing.

At the core of all these themes is the strong market need for trustless verification that data is
correct and was computed on properly—which is different from blockchain transaction
verification. Both are important, but the gravity is tilting to assurance of accurate data and
computation. Enterprises want confidence that their own engineers, as well as third-party
partners, have not manipulated the datasets core to their operations (particularly for financial
data, where there is a deeper incentive for bad actors to tamper).

Estimating market potential is more based on analogs vs. market participants multiplied by a
price model. That said, SxT is vying for a near-term podium on which Proof of SQL is
established as the gold standard for all queries. This would be monetized by either cash payments
per query or through a SxT token—which is part of the roadmap today.

One pertinent example around financial data verifiability is the payment processing space, where
revenue today in Web2 is a $65B market growing at 10%+ and expected to be close to $200B by
2032... and this is only one use case for Proof of SQL. Another example would be the global
SWIFT network which connects 11K institutions. Total revenue for the SWIFT network was
900M euros in 2020, and this is a member-owned cooperative.

57

References
[1] Stock option volume report. MarketChameleon.com. (n.d.).
https://marketchameleon.com/Reports/optionVolumeReport

[2] White, J. T., & Dykstra, S. E. D. (2022, December 13). Methods for Verifying Database
Query Results and Devices Thereof.
https://image-ppubs.uspto.gov/dirsearch-public/print/downloadPdf/11526622

[3] Biscuit authorization (RBAC). Space and Time. (n.d.).
https://docs.spaceandtime.io/docs/biscuit-authorization

[4] Official Legal Text. General Data Protection Regulation (GDPR). (2022, September 27).
https://gdpr-info.eu/

[5] Justin Thaler (2022), “Proofs, Arguments, and Zero-Knowledge”, Foundations and Trends®
in Privacy and Security: Vol. 4, No. 2–4, pp 117–660. DOI: 10.1561/3300000030.
https://people.cs.georgetown.edu/jthaler/ProofsArgsAndZK.pdf

[6] Lee, J. (2021a). Dory: Efficient, transparent arguments for generalised inner products and
polynomial commitments. Theory of Cryptography, 1–34.
https://doi.org/10.1007/978-3-030-90453-1_1 https://eprint.iacr.org/2020/1274.pdf

This document has been prepared by Space and Time Labs, Inc. (the “Company”). This document does not constitute or form part of and should
not be construed as an offer to sell or issue or the solicitation of an offer to buy or acquire securities of the Company or any of its affiliates in any
jurisdiction or as an inducement to enter into investment activity. No part of this document, nor the fact of its distribution, should form the basis
of, or be relied on in connection with, any contract or commitment or investment decision whatsoever. No money, securities or other
consideration is being solicited, and, if sent in response to this presentation or the information contained herein, will not be accepted. This
document is not financial, legal, tax or other product advice.

This document contains certain forward-looking statements relating to future events or future predictions, which are generally identifiable by use
of forward-looking terminology such as “believes”, “expects”, “may”, “will”, “should”, “plan”, “intend”, or “anticipates” or the negative thereof
or other variations thereon or comparable terminology, or by discussion of strategy that involve risks and uncertainties. These forward-looking
statements and the related information contained herein regarding matters that are not historical facts, are only predictions and estimates regarding
future events and circumstances and involve known and unknown risks, uncertainties and other factors, that may cause the Company’s or its
industry’s actual results, levels of activity, performance or achievements to be materially different from any future results, levels of activity,
performance or achievements expressed or implied by such forward-looking statements. These statements and the related information are based
on various assumptions by the Company which may not prove to be correct. The information contained herein has not been independently
verified. No representation, warranty or undertaking, express or implied, is made as to, and no reliance should be placed on, the fairness,
accuracy, completeness or correctness of the information or the opinions contained herein. None of the Company or any of its affiliates, advisors
or representatives shall have any liability whatsoever (in negligence or otherwise) for any loss howsoever arising from any use of this document
or its contents or otherwise arising in connection with the document.

The statements contained in this document speak only as at the date as of which they are made, and the Company expressly disclaims any
obligation or undertaking to supplement, amend or disseminate any updates or revisions to any statements contained herein to reflect any change
in events, conditions or circumstances on which any such statements are based. By preparing this presentation, none of the Company, its
management, and their respective advisers undertakes any obligation to provide the recipient with access to any additional information or to
update this presentation or any additional information or to correct any inaccuracies in any such information which may become apparent.

This document is highly confidential and being given solely for the information of the recipient and no portion hereof, may be shared, copied,
reproduced or redistributed to any other person in any manner.

58

https://marketchameleon.com/Reports/optionVolumeReport
https://image-ppubs.uspto.gov/dirsearch-public/print/downloadPdf/11526622
https://docs.spaceandtime.io/docs/biscuit-authorization
https://gdpr-info.eu/
https://people.cs.georgetown.edu/jthaler/ProofsArgsAndZK.pdf
https://eprint.iacr.org/2020/1274.pdf

